精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标.
分析:(1)把C(0,4),A(4,0)代入y抛物线的解析式得到关于a与c的方程组,解方程组即可;
(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G,解方程-
1
2
x2
+x+4可求得B(-2,0),则AB=6,BG=m+2,分别由QE∥AC,EG∥OC,根据三角形相似的判定得到△BEQ∽△BCA,△BEG∽△BCO,利用相似比可表示出EG=
2m+4
3
,而S△CQE=S△BCQ-S△BEQ,根据三角形的面积公式用m表示S△CQE,配成顶点式为S△CQE=-
1
3
(m-1)2+3,再根据二次函数的最值问题即可得到m=1时,S△CQE有最大值3,由此确定Q的坐标.
解答:解:(1)把C(0,4),A(4,0)代入y=ax2-2ax+c(a≠0)得,
c=4,16a-8a+c=0,
解得a=-
1
2
,c=4,
∴该抛物线的解析式;y=-
1
2
x2
+x+4;

(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G,如图,精英家教网
解方程-
1
2
x2
+x+4=0得x1=-2,x2=4,
∴B点坐标为(-2,0),
∴AB=6,BQ=m+2,
∵QE∥AC,
∴△BEQ∽△BCA,
BE
BC
=
BQ
BA
=
m+2
6

又∵EG∥OC,
∴△BEG∽△BCO,
BE
BC
=
EG
OC
=
EG
4

EG
4
=
m+2
6

∴EG=
2m+4
3

∴S△CQE=S△BCQ-S△BEQ
=
1
2
BQ•OC-
1
2
BQ•EG
=
1
2
(m+2)•4-
1
2
(m+2)•
2m+4
3

=-
1
3
m2+
2
3
m+
8
3

=-
1
3
(m-1)2+3,
又∵-2≤m≤4,
∴当m=1时,S△CQE有最大值3,此时Q点的坐标为(1,0).
点评:本题考查了二次函数的综合题:点在抛物线上,则点的横纵坐标满足其二次函数解析式;通过几何关系列出二次函数关系式,并配成抛物线的顶点式y=a(x-h)2+k,当a<0,x=h,y有最大值k.也考查了三角形相似的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+bx+c与x轴交于A、B两点,它们的横坐标分别为-1和3,精英家教网与y轴交点C的纵坐标为3,△ABC的外接圆的圆心为点M.
(1)求这条抛物线的解析式;
(2)求图象经过M、A两点的一次函数解析式;
(3)在(1)中的抛物线上是否存在点P,使过P、M两点的直线与△ABC的两边AB、BC的交点E、F和点B所组成的△BEF和△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•宁化县质检)已知:如图,抛物线y=ax2+bx+c与x轴交于点A(1-
3
,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P′(1,3)处.
(1)求原抛物线的解析式;
(2)在原抛物线上,是否存在一点,与它关于原点对称的点也在该抛物线上?若存在,求满足条件的点的坐标;若不存在,说明理由.
(3)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比
5
-1
2
(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少?(参考数据:
5
≈2.236
6
≈2.449
,结果精确到0.001)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A,B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)若点M在抛物线上,且△ABC与△ABM的面积相等,直接写出点M的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与线段AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为点P,直线PC与x轴的交点D恰好与点A关于y轴对称.
(1)求p、q的值.
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.
(3)连接PA、AC.问:在直线PC上,是否存在这样点E(不与点C重合),使得以P、A、E为顶点的三角形与△PAC相似?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案