【题目】已知:如图1,六边形中,,,.
(1)找出这个六边形中所有相等的内角_______.证明其中的一个结论.
(2)如果,证明对角线,互相平分;
(3)如图,如果,,,,,对角线平分对角线,求的长.
【答案】(1),,,证明见解析;(2)证明见解析;(3).
【解析】
(1)如图(见解析),先根据平行线的性质可得,,再根据等量代换即可得;同样的方法,可证出,;
(2)如图(见解析),先根据平行四边形的判定与性质得出,,,从而可得,再结合(1)的结论、角的和差可得,然后根据三角形全等的判定定理与性质可得,从而可得,最后根据平行四边形的判定与性质即可得证;
(3)如图(见解析),先根据矩形的判定与性质得出,,,再根据直角三角形的性质可得,,设,然后利用直角三角形的性质、解直角三角形可分别求出BG、CG、EH、FH的长,又根据相似三角形的判定与性质可得,从而可得x的值,据此可求出AG、CG的长,最后利用勾股定理、线段的和差即可得.
(1),,,证明过程如下:
如图1-1,延长,交于点
∵
∴
∵
∴
∴;
如图1-2,延长,交于点
∵
∴
∵
∴
∴;
如图1-3,延长,交于点
∵
∴
∵
∴
∴;
(2)延长、交于点,延长、交于点,连、
∵,
∴四边形是平行四边形
∴,,
∴,即
由(1)可知,
∴,即
∴
∴
∴,即
又∵
∴四边形是平行四边形
∴,互相平分;
(3)延长、交于点,延长、交于点
∵,,
∴四边形是矩形
∴,,
在中,
∴,
∴
又∵是的中点
∴
∴
设,则
在中,,即
解得
∴
∴
由(1)可知,
∴,即
在和中,
∴
∴,即
解得
∴,
∴
∴.
科目:初中数学 来源: 题型:
【题目】如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是的直径,为上一点,是半径上一动点(不与,重合),过点作射线,分别交弦,于,两点,过点的切线交射线于点.
(1)求证:.
(2)当是的中点时,
①若,试证明四边形为菱形;
②若,且,求的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数的图象与性质.
小菲根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小菲的探究过程,请补充完整:
(1)函数的自变量的取值范围是___________________.
(2)下表是与的几组对应值.
… | 1 | 2 | 3 | … | ||||||||
… | 2 | … |
表中的值为____________________________.
(3)如下图,在平面直角坐标系中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;
(4)根据画出的函数图象,写出:
①时,对应的函数值约为__________________(结果保留一位小数);
②该函数的一条性质:________________________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角梯形ABCD中,AB∥CD,∠C=90°,以AD为直径的⊙O与BC相切于点E,交CD于点F,连接DE.
(1)证明:DE平分∠ADC;
(2)已知AD=4,设CD的长为x(2<x<4).
①当x=2.5时,求弦DE的长度;
②当x为何值时,DFFC的值最大?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的二次函数y=ax2﹣4ax+a+1(a>0)
(1)若二次函数的图象与x轴有交点,求a的取值范围;
(2)若P(m,n)和Q(5,b)是抛物线上两点,且n>b,求实数m的取值范围;
(3)当m≤x≤m+2时,求y的最小值(用含a、m的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2010河南20题)为鼓励学生参与体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为,单价和为80元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球的数量多于25个,有哪几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的顶点,经过点,与轴分别交于,两点.
(1)求该抛物线的解析式;
(2)如图1,点是抛物线上的一个动点,且在直线的下方,过点作轴的平行线与直线交于点,当取最大值时,求点的坐标;
(3)如图2,轴交轴于点,点是抛物线上,之间的一个动点,直线,与分别交于,,当点运动时.
①直接写出的值;
②直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com