精英家教网 > 初中数学 > 题目详情
在平面直角坐标系xOy中,抛物线y=mx2+2mx+n经过P(,5),A(0,2)两点.
(1)求此抛物线的解析式;
(2)设抛物线的顶点为B,将直线AB沿y轴向下平移两个单位得到直线l,直线l与抛物线的对称轴交于C点,求直线l的解析式;
(3)在(2)的条件下,求到直线OB,OC,BC距离相等的点的坐标.

【答案】分析:(1)把P,A坐标代入抛物线解析式即可.
(2)先设出平移后的直线l的解析式,然后根据(1)的抛物线的解析式求出C点的坐标,然后将C点的坐标代入直线l中即可得出直线l的解析式.
(3)本题关键是找出所求点的位置,根据此点到直线OB、OC、BC的距离都相等,因此这类点应该有4个,均在△OBC的内角平分线上(△OBC外有3个,三条角平分线的交点是一个),可据此来求此点的坐标.
解答:解:(1)根据题意得
解得
所以抛物线的解析式为:

(2)由得抛物线的顶点坐标为B(,1),
依题意,可得C(,-1),且直线过原点,
设直线的解析式为y=kx,则
解得
所以直线l的解析式为

(3)到直线OB、OC、BC距离相等的点有四个,如图,
由勾股定理得OB=OC=BC=2,所以△OBC为等边三角形.
易证x轴所在的直线平分∠BOC,y轴是△OBC的一个外角的平分线,
作∠BCO的平分线,交x轴于M1点,交y轴于M2点,
作△OBC的∠BCO相邻外角的角平分线,交y轴于M3点,
反向延长线交x轴于M4点,可得点M1,M2,M3,M4就是到直线OB、OC、BC距离相等的点.
可证△OBM2、△BCM4、△OCM3均为等边三角形,可求得:
①OM1==×2=,所以点M1的坐标为(,0).
②点M2与点A重合,所以点M2的坐标为(0,2),
③点M3与点A关于x轴对称,所以点M3的坐标为(0,-2),
④设抛物线的对称轴与x轴的交点为N,
M4N=,且ON=M4N,
所以点M4的坐标为(,0)
综合所述,到直线OB、OC、BC距离相等的点的坐标分别为:
M1,0)、M2(0,2)、M3(0,-2)、M4,0).
点评:本题主要考查了二次函数解析式的确定,一次函数的平移以及角平分线定理的应用等知识点.综合性强,能力要求较高.考查学生分类讨论,数形结合的数学思想方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案