精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD是正方形,点P是CD上一点,BE⊥AP于E,DF⊥AP于F.
求证:(1)△ABE≌△DAF;(2)BE=EF+DF.

证明:(1)在△ABE和△DAF中,
∠FDA+∠DAF=90°,∠BAE+∠EBA=90°,∠DAF+∠EAB=90°,
∴∠DAF=∠ABE,∠FDA=∠EAB,
又∵AD=AB,
∴△ABE≌△DAF(ASA);

(2)∵△ABE≌△DAF,
∴AE=DF,BE=AF,
∵AF=AE+EF,
∴BE=DF+EF.
分析:根据∠DAF=∠ABE,∠FDA=∠EAB,AD=AB可以求证△ABE≌△DAF,得AE=DF,BE=AF,∵AF=AE+EF,∴BE=DF+EF.
点评:本题考查了正方形各边长相等、各内角为直角的性质,全等三角形的判定即全等三角形对应边相等的性质,本题中求证△ABE≌△DAF是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案