精英家教网 > 初中数学 > 题目详情
如图,从地面垂直向上抛出一小球,小球的高度(单位:米)与小球运动时间(单位:秒)的函数关系式是,那么小球运动中的最大高度   
4.9米
解:h=9.8t-4.9t2
=4.9[-(t-1)2+1]
当t=1时,
函数的最大值为4.9米,
这就是小球运动最大高度.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点的坐标分别为
(1)请在图中画出,使得关于点成中心对称;
(2)若一个二次函数的图象经过(1)中的三个顶点,求此二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图一,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6),D是BC边上的动点(与点B,C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,将△BDE沿DE翻折,得到△GDE,并使直线DG、DF重合。
(1)如图二,若翻折后点F落在OA边上,求直线DE的函数关系式;
(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;
(3)一般地,请你猜想直线DE与抛物线的公共点的个数,在图二的情形中通过计算验证你的猜想;如果直线DE与抛物线始终有公共点,请在图一中作出这样的公共点。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知两个关于的二次函数,当时,;且二次函数的图象的对称轴是直线
(1)求的值;
(2)求函数的表达式;
(3)在同一直角坐标系内,问函数的图象与的图象是否有交点?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线的对称轴为直线,点AB均在抛物线上,且ABx轴平行,其中点A的坐标为(0,3),则点B的坐标为( )

A(2,3)  B(3,2)   C(3,3)   D.(4,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知二次函数的图像与轴相交于点A、B,顶点为C,点D在这个二次函数图像的对称轴上,若四边形ABCD时一个边长为2且有一个内角为60°的菱形,求此二次函数的表达式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2-2x-3与两坐标轴有三个交点,则经过这三个点的外接圆的半径 为     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量x的取值范围);
(2)当x是多少时,这个三角形面积S最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是______.

查看答案和解析>>

同步练习册答案