精英家教网 > 初中数学 > 题目详情
14.把下列多项式分解因式:
(1)-2x3+18x;
(2)(a+2b)2+2(a+2b-1)+3.

分析 (1)直接提取公因式-2x,进而利用平方差公式分解因式得出答案;
(2)直接去括号,再利用完全平方公式分解因式得出答案.

解答 解:(1)-2x3+18x
=-2x(x2-9)
=-2x(x+3)(x-3);

(2)(a+2b)2+2(a+2b-1)+3
=(a+2b)2+2(a+2b)+1
=(a+2b+1)2

点评 此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.已知:x=$\sqrt{2+\sqrt{3}}$,y=$\sqrt{2-\sqrt{3}}$,则代数式x+y的值为(  )
A.4B.2$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列说法错误的是(  )
A.$\sqrt{3}$是3的平方根B.|$\sqrt{2}$-1|=$\sqrt{2}$-1
C.-$\sqrt{5}$的相反数是$\sqrt{5}$D.带根号的数都是无理数

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图4×4的正方形网格每个小正方形的边长为1,每个小正方形的顶点叫格点,点A,B(均在格点上)的位置如图,若以A,B为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有(  )
A.6B.7C.9D.11

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在直角坐标系中,直线AB分别与x轴、y轴交于B、A两点,OA、OB的长是关于x的一元二次方程x2-12x+32=0的两个实数根,且OB>OA,以OA为一边作如图所示的正方形AOCD,CD交AB于点P.
(1)求直线AB的解析式;
(2)在x轴上是否存在一点Q,使以P、C、Q为顶点的三角形与△ADP相似?若存在,求点Q坐标;否则,说明理由;
(3)设N是平面内一动点,在y轴上是否存在点M,使得以A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标;否则,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算
(1)4$\sqrt{2}$+$\sqrt{8}$-$\sqrt{18}$       
(2)$\sqrt{1\frac{1}{3}}$÷$\sqrt{2\frac{1}{3}}$×$\sqrt{1\frac{2}{5}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.观察图形,根据你发现的规律填空,图④中的数x是30.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.书包里有数学书2本,英语书3本,语文书4本,从中任意抽取一本是数学书的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:($\frac{1}{3}$)-1+16÷(-2)3+(2005-π)0-$\sqrt{3}$tan30°.

查看答案和解析>>

同步练习册答案