精英家教网 > 初中数学 > 题目详情
CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.

(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE______CF;EF______|BE-AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件______,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
(1)①∵∠BCA=90°,∠α=90°,
∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,
∴∠CBE=∠ACF,
∵CA=CB,∠BEC=∠CFA;
∴△BCE≌△CAF,
∴BE=CF;EF=|BE-AF|.
②所填的条件是:∠α+∠BCA=180°.
证明:在△BCE中,∠CBE+∠BCE=180°-∠BEC=180°-∠α.
∵∠BCA=180°-∠α,
∴∠CBE+∠BCE=∠BCA.
又∵∠ACF+∠BCE=∠BCA,
∴∠CBE=∠ACF,
又∵BC=CA,∠BEC=∠CFA,
∴△BCE≌△CAF(AAS)
∴BE=CF,CE=AF,
又∵EF=CF-CE,
∴EF=|BE-AF|.

(2)EF=BE+AF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小明、小敏两人一起做数学作业,小敏把题读到如图(1)所示,CD⊥AB,BE⊥AC时,还没把题读完,就说:“这题一定是求证∠B=∠C,也太容易了.”她的证法是:由CD⊥AB,BE⊥AC,得∠ADC=∠AEB=90°,公共角∠DAC=∠BAE,所以△DAC≌△EAB.由全等三角形的对应角相等得∠B=∠C.
小明说:“小敏你错了,你未弄清本题的条件和结论,即使有CD⊥AB,BE⊥AC,公共角∠DAC=∠BAE,你的推理也是错误的.看我画的图(2),显然△DAC与△EAB是不全等的.再说本题不是要证明∠B=∠C,而是要证明BE=CD.”
(1)根据小敏所读的题,判断“∠B=∠C”对吗?她的推理对吗?若不对,请做出正确的推理.
(2)根据小明说的,要证明BE=CD,必然是小敏丢了题中条件,请你把小敏丢的条件找回来,并根据找出的条件,你做出判断BE=CD的正确推理.
(3)要判断三角形全等,从这个问题中你得到了什么启发?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB的度数是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足
b-6=0
2a-b=10
,且c是不等式组
x+12
4
≤x+6
2x+2
3
>x-3
的最大整数解.
(1)求a、b、c的长.
(2)若AE平分△ABC的周长,求∠BEA的大小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.
(1)求证:MN⊥DE;
(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;
(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,∠C=90°,∠B=60°,BC=4,则AB=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有(  )
A.4个B.5个C.6个D.7个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,∠A=40°,P为三角形ABC内一点,PB=PC,且∠PBC=∠PCA,求∠BPC的度数.

查看答案和解析>>

同步练习册答案