精英家教网 > 初中数学 > 题目详情

【题目】如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是正方形ABCD的中心;
②当x= 时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的是(写出所有正确判断的序号).

【答案】①④
【解析】解:(1)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,

∴△BEF和△DGH是等腰直角三角形,

∴当AE=1时,重合点P是BD的中点,

∴点P是正方形ABCD的中心;

故①结论正确,(2)正方形纸片ABCD,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,

∴△BEF∽△BAC,

∵x=

∴BE=2﹣ =

= ,即 =

∴EF= AC,

同理,GH= AC,

∴EF+GH=AC,

故②结论错误,(3)六边形AEFCHG面积=正方形ABCD的面积﹣△EBF的面积﹣△GDH的面积.

∵AE=x,

∴六边形AEFCHG面积=22 BEBF﹣ GDHD=4﹣ ×(2﹣x)(2﹣x)﹣ xx=﹣x2+2x+2=﹣(x﹣1)2+3,

∴六边形AEFCHG面积的最大值是3,

故③结论错误,(4)当0<x<2时,

∵EF+GH=AC,

六边形AEFCHG周长=AE+EF+FC+CH+HG+AG=(AE+CH)+(FC+AG)+(EF+GH)=2+2+2 =4+2

故六边形AEFCHG周长的值不变,

故④结论正确.

所以答案是:①④.

【考点精析】本题主要考查了正方形的性质和翻折变换(折叠问题)的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.

(1)分别求出这两个函数的表达式;

(2)写出点P关于原点的对称点P'的坐标;

(3)求P'AO的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人分别从A、B两地同时出发.相向而行,甲的速度是每分钟60米,乙的速度是每分钟90米,出发x分钟后,两人恰好相距100米,则A、B两地之间的距离是米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有ADCE中,DE最小的值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则|a+2|-|1-a|=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为(  )
A.(a+b)元
B.3(a+b)元
C.(3a+b)元
D.(a+3b)元

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不等式3+2x>5的解集是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰△ABC,如果有一个角等于40°,那么另两个角等于______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全等图形是指两个图形(

A.能够重合B.形状相同C.大小相同D.相等

查看答案和解析>>

同步练习册答案