精英家教网 > 初中数学 > 题目详情
如图,P为抛物线y=
3
4
x2-
3
2
x+
1
4
上对称轴右侧的一点,且点P在x轴上方,过点P作PA垂直x轴于点A,PB垂直y轴于点B,得到矩形PAOB.若AP=1,求矩形PAOB的面积.
∵PA⊥x轴,AP=1,
∴点P的纵坐标为1.
当y=1时,
3
4
x2-
3
2
x+
1
4
=1,
即x2-2x-1=0.
解得x1=1+
2
,x2=1-
2

∵抛物线的对称轴为直线x=1,点P在对称轴的右侧,
∴x=1+
2

∴矩形PAOB的面积为(1+
2
)个平方单位.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与x轴交于点A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)求出该抛物线的对称轴及顶点D的坐标;
(3)若点P在抛物线上运动(点P异于点D),当△PAB的面积和△DAB面积相等时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,把△OAB放置于平面直角坐标系xOy中,∠OAB=90°,OA=2,AB=
3
2
,把△OAB沿x轴的负方向平移2OA的长度后得到△DCE.
(1)若过原点的抛物线y=ax2+bx+c经过点B、E,求此抛物线的解析式;
(2)若点P在该抛物线上移动,当点P在第一象限内时,过点P作PQ⊥x轴于点Q,连结OP.若以O、P、Q为顶点的三角形与以B、C、E为顶点的三角形相似,直接写出点P的坐标;
(3)若点M(-4,n)在该抛物线上,平移抛物线,记平移后点M的对应点为M′,点B的对应点为B′.当抛物线向左或向右平移时,是否存在某个位置,使四边形M′B′CD的周长最短?若存在,求出此时抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,二次函数y=x2-bx+c(b>0)的图象经过点A(-1,b),与y轴相交于点B,且∠ABO的余切值为3.
(1)求点B的坐标;
(2)求这个函数的解析式;
(3)如果这个函数图象的顶点为C,求证:∠ACB=∠ABO.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,己知点P是x轴上一点,以P为圆心的⊙P分别与x轴、y轴交于点A、B和C、D,其中A(-3,0),B(1,0).过点C作⊙P的切线交x轴于点E.
(1)求直线CE的解析式;
(2)求过A、B、C三点的抛物线解析式;
(3)第(2)问中的抛物线的顶点是否在直线CE上,请说明理由;
(4)点F是线段CE上一动点,点F的横坐标为m,问m在什么范围内时,直线FB与⊙P相交?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

矩形ABCD的边长AB=3,AD=2,将此矩形放在平面直角坐标系中,使AB在x轴的正半轴上,点A在点B的左侧,另两个顶点都在第一象限,且直线y=
3
2
x-1
经过这两个顶点中的一个.
(1)求A、B、C、D四点坐标;
(2)以AB为直径作⊙M,记过A、B两点的抛物线y=ax2+bx+c的顶点为P.
①若P点在⊙M和矩形内,求a的取值范围;
②过点C作CF切⊙M于E,交AD于F,当PFAB时,求抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c的图象的顶点位于x轴下方,它到x轴的距离为4,下表是x与y的对应值表:
x______0______2______
y0-3-4-30
(1)求出二次函数的解析式;
(2)将表中的空白处填写完整;
(3)在右边的坐标系中画出y=ax2+bx+c的图象;
(4)根据图象回答:当x为何值时,函数y=ax2+bx+c的值大于0.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)求y与x之间的函数关系式;
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?

查看答案和解析>>

同步练习册答案