精英家教网 > 初中数学 > 题目详情
9.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2$\sqrt{3}$,DE=2,则四边形OCED的面积为2$\sqrt{3}$.

分析 连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.

解答 解:连接OE,与DC交于点F,
∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,
∵OD∥CE,OC∥DE,
∴四边形ODEC为平行四边形,
∵OD=OC,
∴四边形ODEC为菱形,
∴DF=CF,OF=EF,DC⊥OE,
∵DE∥OA,且DE=OA,
∴四边形ADEO为平行四边形,
∵AD=2$\sqrt{3}$,DE=2,
∴OE=2$\sqrt{3}$,即OF=EF=$\sqrt{3}$,
在Rt△DEF中,根据勾股定理得:DF=$\sqrt{4-3}$=1,即DC=2,
则S菱形ODEC=$\frac{1}{2}$OE•DC=$\frac{1}{2}$×2$\sqrt{3}$×2=2$\sqrt{3}$.
故答案是:2$\sqrt{3}$.

点评 此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.一个不透明的口袋中装有橙色和白色两种乒乓球共60个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色再放回口袋中,不断重复这一过程,通过多次实验后,摸到白球的频率约为35%,估计袋中橙色乒乓球约有39个.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,矩形纸片ABCD,AB=3,AD=5,折叠纸片,使点A落在BC边上的E处,折痕为PQ,当点E在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点E在BC边上可移动的最大距离为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,线段AB=BC=CD=DE=1.2cm,那么图中所有线段的长度之和等于24cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.用一根80cm的绳子围成一个长方形,且这个长方形的长比宽多10cm,设长方形的长为xcm,宽为ycm,可列方程组为$\left\{\begin{array}{l}{x-y=10}\\{2x+2y=80}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14. 为了了解某市九年级学生的体育成绩(成绩均为整数),随机抽取了部分学生的体育成绩并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)统计,得到统计图、表如图.
分数段ABCDE合计
频数/人123684b48c
频率0.05a0.350.250.201
根据上面的信息,回答下列问题:
(1)统计表中,a=0.15,b=60,c=240;将频数分布直方图补充完整.
(2)小明说:“这组数据的众数一定在C中.”你认为小明的说法正确吗?错误(选填“正确”或“错误”).
(3)若成绩在27分及以上定为优秀,则该市30000名九年级学生中体育成绩为优秀的学生人数约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,已知点O为∠CAB与∠ACD的平分线的交点,OE⊥AC于E,若OE=2,则点O到AB的距离与点O到CD的距离之和是4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.对于?ABCD,从以下五个关系式中任取一个作为条件:①AB=BC;②∠BAD=90°;③AC=BD;④AC⊥BD;⑤∠DAB=∠ABC,能判定?ABCD是矩形的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,直线AB,CD相交于点O,OA平分∠EOC,若∠EOC=70°.
(1)求∠BOD的度数;
(2)求∠BOC的度数.

查看答案和解析>>

同步练习册答案