精英家教网 > 初中数学 > 题目详情
在一场足球比赛中,一球员从球门正前方10米处起脚射门,当球飞行的水平距离为6米时达到最高点,此时球高为3米.
(1)如图建立直角坐标系,当球飞行的路线为一抛物线时,求此抛物线的解析式.
(2)已知球门高为2.44米,问此球能否射中球门(不计其它情况).
(1)抛物线的顶点坐标是(4,3),
设抛物线的解析式是:y=a(x-4)2+3,
把(10,0)代入得36a+3=0,
解得a=-
1
12

则抛物线是y=-
1
12
(x-4)2+3;

(2)当x=0时,y=-
1
12
×16+3=3-
4
3
=
5
3
<2.44米.
故能射中球门.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知抛物线经过点(1,0),(-5,0),且顶点纵坐标为
9
2
,这个二次函数的解析式______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线m的解析式为y=x2-4,与x轴交于A、C两点,B是抛物线m上的动点(B不与A、C重合),且B在x轴的下方,抛物线n与抛物线m关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求证:点D一定在抛物线n上.
(2)平行四边形ABCD能否为矩形?若能为矩形,求出这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);若不能为矩形,请说明理由.
(3)若(2)中过A、B、C、D的圆交y轴于E、F,而P是弧CF上一动点(不包括C、F两点),连接AP交y轴于N,连接EP交x轴于M.当P在运动时,四边形AEMN的面积是否改变?若不变,则求其面积;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=-
1
12
x2+
2
3
x+
5
3
,则该运动员此次掷铅球的成绩是______m.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2-x-
3
2
与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形ABCD的长AB=5cm,点O是AB的中点,OP⊥AB,两半圆的直径分别为AO与OB.抛物线y=ax2经过C、D两点,则图中阴影部分的面积是______cm2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A,A是抛物线y=
1
2
x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,CB2交抛物线于点A2

(1)如图1,已知A1,A3两点的横坐标依次为1,3,求线段CA2的长;
(2)如图2,若将抛物线y=
1
2
x2改为抛物线y=
1
2
x2-x+1,且A1,A2,A3三点的横坐标为连续的整数,其他条件不变,求线段CA2的长;
(3)若将抛物线y=
1
2
x2改为抛物线y=ax2+bx+c(a>0),A1,A2,A3三点的横坐标为连续整数,其他条件不变,试猜想线段CA2的长(用a,b,c表示,并直接写出答案).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2.若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.那么使得M=1的x值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是(  )
A.6sB.4sC.3sD.2s

查看答案和解析>>

同步练习册答案