已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使y1<y2成立的的取值范围是 .
科目:初中数学 来源: 题型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
1 |
2 |
1 |
6 |
2 |
3 |
1 |
2 |
1 |
6 |
2 |
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:044
如图,已知二次函数的图像与x轴交于点A、点B(点B在X轴的正半轴上),与y轴交于点C,其顶点为D,直线DC的函数关系式为,又tan∠OBC=1,
(1
) 求a、k的值;(5分)(2
) 探究:在该二次函数的图像上是否存在点P(点P与点B、C补重合),使得ΔPBC是以BC为一条直角边的直角三角形?若存在,求出点P的坐标,若不存在,请你说明理由(5分)查看答案和解析>>
科目:初中数学 来源: 题型:
已知二次函数的图像与x轴交于B(-2,0),C(4,0)两点,点E是对称轴与的交点.
(1)求二次函数的解析表达式;
(2)T为对称轴上一动点,以点B为圆心,BT为半径作⊙B,写出直线CT与⊙B相切时,T点的坐标;
(3)若在x轴上方的P点为抛物线上的动点,且∠BPC为锐角,直接写出PE的取值范围.
(4)对于(1)中得到的关系式,若为整数,在使得为完全平方数的所有的值中,设的最大值为,最小值为,次小值为,(注:一个数如果是另一个整数的完全平方,那么就称这个数为完全平方数.)求的值.
| |||
查看答案和解析>>
科目:初中数学 来源: 题型:
已知二次函数的图像与x轴交于B(-2,0),C(4,0)两点,点E是对称轴与的交点.
(1)求二次函数的解析表达式;
(2)T为对称轴上一动点,以点B为圆心,BT为半径作⊙B,写出直线CT与⊙B相切时,T点的坐标;
(3)若在x轴上方的P点为抛物线上的动点,且∠BPC为锐角,直接写出PE的取值范围.
(4)对于(1)中得到的关系式,若为整数,在使得为完全平方数的所有的值中,设的最大值为,最小值为,次小值为,(注:一个数如果是另一个整数的完全平方,那么就称这个数为完全平方数.)求的值.
| |||
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com