精英家教网 > 初中数学 > 题目详情

【题目】在生活中,有很多函数并不一定存在解析式,对于这样的函数,我们可以通过列表和图象来对它可能存在的性质进行探索,例如下面这样一个问题:

已知yx的函数,下表是yx的几组对应值.

x

5

4

3

2

0

1

2

3

4

5

y

1.969

1.938

1.875

1.75

1

0

2

1.5

0

2.5

小孙同学根据学习函数的经验,利用上述表格反映出的yx之间的变化规律,对该函数的图象与性质进行了探究.

下面是小孙同学的探究过程,请补充完整;

1)如图,在平面之间坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出函数的图象:

2)根据画出的函数图象回答:

x=﹣1时,对应的函数值y的为   

若函数值y0,则x的取值范围是   

写出该函数的一条性质(不能与前面已有的重复):   

【答案】1)详见解析;(2①1.35(答案不唯一);x1x4函数有最小值(答案不唯一).

【解析】

1)通过描点法画出函数图象;

2)直接从图象中读取相关数值即可.

1)通过描点画出如下函数图象:

2)答案为近似值,不唯一,

x=﹣1时,从图象可以看出:y1.35

函数值y0,则x1x4

函数有最小值(答案不唯一);

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x+bk1≠0)与反比例函数y=k2≠0)的图象交于A-1-4)和点B4m

1)求这两个函数的解析式;

2)已知直线ABy轴于点C,点Pn0)在x轴的负半轴上,若BCP为等腰三角形,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):

组别

成绩分组

频数频率

频数

1

2

0.05

2

4

0.10

3

0.2

4

10

0.25

5

6

6

0.15

合计

40

1.00

根据表中提供的信息解答下列问题:

(1)频数分布表中的

(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为 ,72分及以上为及格,预计及格的人数约为 ,及格的百分比约为

(3)补充完整频数分布直方图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图为二次函数yax2+bx+c的图象,在下列说法中①ac0;②方程ax2+bx+c0的根是x1=﹣1x23;③a+b+c0;④当x1时,yx的增大而增大,正确的是( )

A. ①③B. ②④C. ①②④D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线yx2+bx+c的对称轴为x1,且其顶点在直线y=﹣2x2上.

1)求抛物线的顶点坐标;

2)求抛物线的解析式;

3)在给定的平面直角坐标系中画出这个二次函数的图象;

4)当﹣1x4时,直接写出y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有三个大小一样的正六边形,可按下列方式进行拼接:

方式1:如图1

方式2:如图2

若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则的最大值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yxxb)﹣y轴相交于A点,与x轴相交于BC两点,且点C在点B的右侧,设抛物线的顶点为P

1)若点B与点C关于直线x1对称,求b的值;

2)若OBOA,求△BCP的面积;

3)当﹣1x1时,该抛物线上最高点与最低点纵坐标的差为h,求出hb的关系;若h有最大值或最小值,直接写出这个最大值或最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点BEBC中点,AC= BC=4.

1)求证:DE为圆O的切线;

2)求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数(x>0)(x>0)的图象分别是.设点P上,PAy轴交于点APBx轴,交于点BPAB的面积为(

A. B. C. D.

查看答案和解析>>

同步练习册答案