【题目】⊙o的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是( )
A.7 B.17 C.7或17 D.4
【答案】C.
【解析】
试题分析: ①当AB、CD在圆心两侧时;过O作OE⊥AB交AB于E点,过O作OF⊥CD交CD于F点,连接OA、OC,如图所示:∵半径r=13,弦AB∥CD,且AB=24,CD=10,∴OA=OC=13,AE=EB=12,CF=FD=5,E、F、O在一条直线上,∴EF为AB、CD之间的距离,在Rt△OEA中,由勾股定理可得:OE2=OA2﹣AE2,∴OE==5,在Rt△OFC中,由勾股定理可得:OF2=OC2﹣CF2,∴OF==12,∴EF=OE+OF=17,AB与CD的距离为17;
②当AB、CD在圆心同侧时;同①可得:OE=5,OF=12;则AB与CD的距离为:OF﹣OE=7;故AB与CD的距离是为7或17.故选C.
科目:初中数学 来源: 题型:
【题目】某班数学学习小组某次测验成绩分别是63,72,70,49,66,81,53,92,69,则这组数据的极差是( )
A. 47 B. 43 C. 34 D. 29
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.
⑴若∠BAE=40°,求∠C的度数;
⑵若△ABC周长13cm,AC=6cm,求DC长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,∠BAC=45°,AB=BC.
(1)求证:BC是⊙O的切线;
(2)设阴影部分的面积为a,b,⊙O的面积为S,请写出S与a,b的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点,若m>1,且点A在点B的左侧,OA:OB=1:3
(1)试确定抛物线的解析式;
(2)直线y=kx﹣3与抛物线交于M、N两点,若△AMN的内心在x轴上,求k的值.
(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象,请你结合新图象回答:当直线y=x+b与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在a﹣(2b﹣3c)=﹣□中的□内应填的代数式为( )
A. ﹣a﹣2b+3c B. a﹣2b+3c C. ﹣a+2b﹣3c D. a+2b﹣3c
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.
(1)求证:AC平分∠DAB;
(2)若sin∠ABC=,求tan∠BDC的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com