精英家教网 > 初中数学 > 题目详情
4.2017年,安徽省教育部门将对体育中考自选项目进行改革,某校为了解九年级学生对这次改革的看法,随机调查了部分九年级学生,并根据调查结果制作了如下不完整的统计图表.
根据以上提供的信息,解答下列问题:
(1)本次一共抽取了50名学生,k=10,m=25,n=0.2.
(2)补全频数分布直方图,并求这组数据的众数和中位数.
(3)若该校9年级共有学生2000名,请估计该校对体育中考改革关注(含高度关注和一般关注)的学生人数.
关注情况频数频率
A.高度关注k0.2
B.一般关注m0.5
C.极少关注10n
D.不关注50.1

分析 (1)根据D项目的频数及频率可得总数,再依据频率=频数÷总数可得答案;
(2)根据分布表可补全条形图,依据众数、中位数定义可得;
(3)用A、B的频率和乘以总人数可得.

解答 解:(1)本次一共抽取的学生数为5÷0.1=50,
k=50×0.2=10,m=50×0.5=25,n=10÷50=0.2,
故答案为:50,10,25,0.2;

(2)补全频数分布直方图如下:

则众数为B:一般关注;
其中位数为第25、26个数据的平均数,由条形图知第25、26个数据均为B:一般关注,
则中位数为B:一般关注;

(3)2000×(0.5+0.2)=1400,
答:估计该校对体育中考改革关注(含高度关注和一般关注)的学生人数约为1400人.

点评 本题考查频数分布直方图、样本、总体、样本容量、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.已知点M(1-2m,m-1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简,再求值:
(1)已知分式$\frac{{a}^{2}+4{b}^{2}+4ab}{{a}^{2}-4{b}^{2}}$,其中a=3,b=$\frac{1}{2}$;
(2)已知$\frac{a-b}{ab}=-2$,求$\frac{2a+ab-2b}{a-ab-b}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.现有边长为4cm的正方形纸片ABCD,点P在AD上,将正方形纸片ABCD折叠使点B落在点P处,点C落在点H处,PH与CD交于点G,折痕为EF,连接EG.
(1)求证:△AEP∽△DPG;
(2)当点P在AD上移动(点P不与A、D重合),三角形DPG的周长是否改变?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,AB为⊙O的直径,弦CD平分∠ACB,CD交OB于点E.DF⊥AC于点F,交AO于点G.
(1)求证:△EDG∽△EAD;
(2)若EG=10,EA=16,求⊙O的半径
(3)求证:DF=BC+AF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,直线AB、CD相交于点O,∠AOE=∠DOE,∠BOE=150°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.计算$\sqrt{4}$的结果是(  )
A.-2B.±2C.2D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,△ABC中,∠ACB=90°,tanA=$\sqrt{2}$,点D是边AC上一点,连接BD,并将
△BCD沿BD折叠,使点C恰好落在边AB上的点E处,过点D作DF⊥BD,交AB于点F.
(1)求证:∠ADF=∠EDF;
(2)探究线段AD,AF,AB之间的数量关系,并说明理由;
(3)若EF=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,AB=DC,添加条件,使得△ABC≌△DCB,这个条件是AC=BD(只需添一个).

查看答案和解析>>

同步练习册答案