分析 如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.根据$\frac{1}{2}$•AP•BE=$\frac{1}{2}$•DF•AQ,利用勾股定理求出BE、DF即可解决问题.
解答 解:如图,连接AE、AF,过点A分别作AP⊥BE、AQ⊥DF,垂足分别为P、Q,作DH⊥BC于H,EG⊥BC于G,设AB=2a.BC=3a.
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,∠BAD=∠BCD=120°,
∴S△ABE=S△ADF=$\frac{1}{2}$S平行四边形ABCD,
在Rt△CDH中,∵∠H=90°,CD=AB=2a,∠DCH=60°,
∴CH=a,DH=$\sqrt{3}$a,
在Rt△DFH中,DF=$\sqrt{F{H}^{2}+D{H}^{2}}$=$\sqrt{(3a)^{2}+(\sqrt{3}a)^{2}}$=2$\sqrt{3}$a,
在Rt△ECG中,∵CE=a,
∴CG=$\frac{1}{2}$a,GE=$\frac{\sqrt{3}}{2}$a,
在Rt△BEG中,BE=$\sqrt{B{G}^{2}+E{G}^{2}}$=$\sqrt{(\frac{7}{2}a)^{2}+(\frac{\sqrt{3}}{2}a)^{2}}$=$\sqrt{13}$a,
∴$\frac{1}{2}$•AP•BE=$\frac{1}{2}$•DF•AQ,
∴$\frac{AP}{AQ}$=$\frac{2\sqrt{3}}{\sqrt{13}}$=$\frac{2\sqrt{39}}{13}$,
故答案为$\frac{2\sqrt{39}}{13}$.
点评 本题考查平行四边形的性质、勾股定理,三角形的面积等知识,解题的关键是利用面积法求线段的长,学会添加常用辅助线,学会利用参数解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | 70°和110° | B. | 80°和120° | C. | 40°和140° | D. | 100°和140° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{6}{17}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{10}}}{10}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com