分析 (1)作CG⊥x轴于G,根据勾股定理和射影定理即可得到结论;
(2)连接PC,由AB是⊙P的直径,得到∠ACB=90°根据等腰三角形的性质得到∠PCB=∠PBC,根据切线的判定定理即可得到结论.
解答 (1)解:作CG⊥x轴于G,
则AC2=AG2+CG2=(3+1)2+(2$\sqrt{2}$)2=24,
由射影定理得:AC2=AG•AB,
∴AB=$\frac{24}{4}$=6,
∴⊙P的半径为3;
(2)证明:连接PC,
∵AB是⊙P的直径,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°,
∵PC=PB,
∴∠PCB=∠PBC,
∵∠A=∠DCF=∠ECB,
∴∠ECB+∠PCB=90°,
∵C在⊙P上,
∴CE是⊙P的切线.
点评 本题考查了切线的判定,圆周角定理,勾股定理,射影定理,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com