精英家教网 > 初中数学 > 题目详情
20.如图,在平面直角坐标系中,△ABC内接于⊙P,AB是⊙P的直径,A(-1,0)C(3,2$\sqrt{2}$),BC的延长线交y轴于点D,点F是y轴上的一动点,连接FC并延长交x轴于点E.
(1)求⊙P的半径;
(2)当∠A=∠DCF时,求证:CE是⊙P的切线.

分析 (1)作CG⊥x轴于G,根据勾股定理和射影定理即可得到结论;
(2)连接PC,由AB是⊙P的直径,得到∠ACB=90°根据等腰三角形的性质得到∠PCB=∠PBC,根据切线的判定定理即可得到结论.

解答 (1)解:作CG⊥x轴于G,
则AC2=AG2+CG2=(3+1)2+(2$\sqrt{2}$)2=24,
由射影定理得:AC2=AG•AB,
∴AB=$\frac{24}{4}$=6,
∴⊙P的半径为3;

(2)证明:连接PC,
∵AB是⊙P的直径,
∴∠ACB=90°,
∴∠CAB+∠CBA=90°,
∵PC=PB,
∴∠PCB=∠PBC,
∵∠A=∠DCF=∠ECB,
∴∠ECB+∠PCB=90°,
∵C在⊙P上,
∴CE是⊙P的切线.

点评 本题考查了切线的判定,圆周角定理,勾股定理,射影定理,正确的作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.已知∠MON=90°,线段AB长为6cm,AB两端分别在OM、ON上滑动,以AB为边作正方形ABCD,对角线AC、BD相交于点P,连结OC.
(1)求证:无论点A、点B怎样运动,点P都在∠AOB的平分线上;
(2)若OP=4$\sqrt{2}$,求OA的长.
(3)求OC的最大值(提示:取AB的中点Q,连接CQ、OQ,运用两点之间,线段最短)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.有一种中文网络即时通讯软件,注册用户通过累积“活跃天数”就可获得相应的等级,如果用户当天(0:00~24:00)使用该软件在2h以上(包括2h),其“活跃天数”累积为1天.一个新用户等级升到1级需要5天的“活跃天数”,这样可以得到1个星星,此后每升1级需要的“活跃天数”都比前一次多2天,每升1级可以得到1个星星,每4个星星可以换成一个月亮,每4个月亮可以换成1个太阳.某用户今天刚升到3个月亮2个星星,那么他升到1个太阳1个月亮至少还需要228天.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,AB是⊙O的直径,点C在圆上,D,E是AC的延长线上的点,连接BD交⊙O于点F,且∠BAD=2∠DBE,AB=AD.
(1)求证:BE是⊙O的切线;
(2)若AC=4,DE=1,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,AB为⊙O的直径,AT是⊙O的切线,TB交⊙O于D,TO交⊙OFC,TO的延长线交⊙O于E,若BD=TD,求tan∠BDE值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图所示,PA、PB切⊙O于点A、B,连接AB交直线OP于点C,若⊙O的半径为3,PA=4,则OC的长为$\frac{9}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:$\sqrt{12}$+(π-2017)0+($\frac{1}{2}$)-1-4cos30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.
(1)求证:△AOB≌△AOD;
(2)试判定四边形ABOD是什么四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)计算:-12×$\sqrt{27}$-($\frac{1}{2}$)-1+6sin60°
(2)化简:$\frac{3x-3}{{x}^{2}-1}$÷$\frac{3x}{x+1}$-$\frac{1}{x-1}$.

查看答案和解析>>

同步练习册答案