3£®ÓÐÕâÑùÒ»ÀàÌâÄ¿£º½«$\sqrt{a¡À2\sqrt{b}}$»¯¼ò£¬Èç¹ûÄãÄÜÕÒµ½Á½¸öÊým¡¢n£¬Ê¹m2+n2=aÇÒmn=$\sqrt{b}$£¬Ôò¿É½«a¡À2$\sqrt{b}$½«±ä³Ém2+n2¡À2mn£¬¼´±ä³É£¨m+n£©2£¬´Ó¶øʹµÃ$\sqrt{a¡À2\sqrt{b}}$»¯¼ò£®ÀýÈ磬5¡À2$\sqrt{6}$=3+2¡À2$\sqrt{6}$=£¨$\sqrt{3}$£©2+£¨$\sqrt{2}$£©2¡À2$\sqrt{2}$¡Á$\sqrt{3}$=£¨$\sqrt{3}$¡À$\sqrt{2}$£©2£¬¡à$\sqrt{5¡À2\sqrt{6}}$=$\sqrt{£¨\sqrt{3}¡À\sqrt{2}£©}$2=£¨$\sqrt{3}$¡À$\sqrt{2}$£©£®ÕâÖÖ·½·¨½Ð×öÅä·½·¨£¬»»Ò»ÖÖ˼·£¬¼ÙÉ軯¼ò5¡À2$\sqrt{6}$µÄ½á¹ûÊÇ$\sqrt{x}$¡À$\sqrt{y}$£¨x£¾y£¾0£©£¬¿ÉÖª5¡À2$\sqrt{6}$=£¨$\sqrt{x}$¡À$\sqrt{y}$£©2£®ÕûÀí£¬µÃ5¡À2$\sqrt{6}$=x+y¡À2$\sqrt{xy}$£¬±È½ÏµÈʽÁ½±ßµÄ×é³É£¬¿ÉµÃx+y=5£¬xy=6£¬¼´x=3£¬y=2£¬ËùÒÔ$\sqrt{5¡À2\sqrt{6}}$=£¨$\sqrt{3}$¡À$\sqrt{2}$£©£®
³¢ÊÔ»¯¼òÏÂÁи÷ʽ£º
£¨1£©$\sqrt{7+4\sqrt{3}}$£»
£¨2£©$\sqrt{8-\sqrt{60}}$£®

·ÖÎö £¨1£©¸ù¾ÝÍêȫƽ·½¹«Ê½µÃ³ö7+4$\sqrt{3}$=£¨2+$\sqrt{3}$£©2½ø¶øÇó³ö¼´¿É£»
£¨2£©¸ù¾ÝÍêȫƽ·½¹«Ê½µÃ³ö8-$\sqrt{60}$=£¨$\sqrt{5}$-$\sqrt{3}$£©2½ø¶øÇó³ö¼´¿É£®

½â´ð ½â£º£¨1£©$\sqrt{7+4\sqrt{3}}$=$\sqrt{{£¨2+\sqrt{3}£©}^{2}}$=2+$\sqrt{3}$£»

£¨2£©$\sqrt{8-\sqrt{60}}$=$\sqrt{8-2\sqrt{15}}$=$\sqrt{£¨\sqrt{5}-\sqrt{3}£©^{2}}$=$\sqrt{5}$-$\sqrt{3}$£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Î¸ùʽµÄ»¯¼òÓëÐÔÖÊ£¬ÊìÁ·Ó¦ÓÃÍêȫƽ·½¹«Ê½ÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÓÐÈô¸É¸öºá×ø±ê·Ö±ðΪÕûÊýµÄµã£¬Æä˳Ðò°´Í¼ÖСú·½ÏòÅÅÁУ¬È磨1£¬0£©£¬£¨2£¬0£©£¬£¨2£¬1£©£¬£¨1£¬1£©£¨1£¬2£©£¬£¨2£¬2£©¡­ÄÇôµÚ23¸öµãÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÎªÊµÏÖΰ´óÖйúÃΣ¬Ä³Ð£¿ªÕ¹¡°ÔÞÃÀ×æ¹úºÍÈËÃñ¡±Õ÷ÎĻ£¬Ð£Ñ§Éú»á¶ÔȫУ¸÷Ä꼶¸÷°àÒ»ÖÜÄÚµÄͶ¸åÇé¿ö½øÐÐͳ¼Æ£¬²¢ÖƳÉÁËÈçͼËùʾµÄÁ½·ù²»ÍêÕûµÄͳ¼Æͼ£®
£¨1£©ÇóÉÈÐÎͳ¼ÆͼÖÐͶ¸åƪÊýΪ2Ëù¶ÔÓ¦µÄÉÈÐεÄÔ²ÐĽǵĶÈÊý£»
£¨2£©Çó¸ÃУ¸÷°àÔÚÕâÒ»ÖÜÄÚͶ¸åµÄƽ¾ùƪÊý£¬²¢½«¸ÃÌõÐÎͳ¼Æͼ²¹³äÍêÕû£®
£¨3£©ÔÚͶ¸åƪÊýΪ9ƪµÄ°à¼¶ÖУ¬°Ë¡¢¾ÅÄ꼶¸÷ÓÐÁ½¸ö°à£¬Ñ§Ð£×¼±¸´ÓÕâËĸö°àÖÐÑ¡³öÁ½¸ö°à²Î¼Ó½ÌÓý¾ÖÕÙ¿ªµÄ±íÕûᣬÇëÄãÓÃÁÐ±í·¨»ò»­Ê÷״ͼµÄ·½·¨Çó³öËùÑ¡Á½¸ö°àÕýºÃ²»ÊÇͬһÄ꼶µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬DÊÇBCµÄÖе㣮AEƽ·Ö¡ÏBAD½»BCÓÚµãE£¬µãOÊÇABÉÏÒ»µã£¬¡ÑO¹ýA£¬EÁ½µã£¬½»ABÓÚµãF£®ÒÑÖªBC=16$\sqrt{2}$£¬AD=4£®
£¨1£©ÇóÖ¤£ºBCÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©Çó¡ÑOµÄ°ë¾¶£»
£¨3£©Çócos¡ÏBEFµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Ä³ÉÌÆ·µÄ½ø¼ÛÊÇ1000Ôª£¬ÊÛ¼ÛΪ1500Ôª£¬ÓÉÓÚÏúÊÛÇé¿ö²»ºÃ£¬É̵ê¾ö¶¨½µ¼Û³öÊÛ£¬µ«ÓÖÒª±£Ö¤ÀûÈóÂʲ»µÍÓÚ5%£¬ÄÇô×î¶àÓ¦½µ450Ôª³öÊÛ´ËÉÌÆ·£®£¨ÀûÈó=ÏúÊÛ¼Û-½ø»õ¼Û£¬ÀûÈóÂÊ=ÀûÈó¡Â½ø»õ¼Û¡Á100%£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®»¯¼ò£º$\frac{2x}{{x}^{2}-4{y}^{2}}$¡Â£¨1+$\frac{x-2y}{x+2y}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®¼ÆË㣺|-$\sqrt{3}$|-$\sqrt{12}$+£¨$\frac{1}{6}$£©-1+2sin60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªy=ax2+bx+cÖУ¬µ±x=1ʱ£¬y=0£»µ±x=3ʱ£¬y=0£»µ±x=2ʱ£¬y=2£¬Ôòº¯Êý½âÎöʽΪy=-2£¨x-1£©£¨x-3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èô¼×ÿСʱ×ß4ǧÃ×£¬³ö·¢3Сʱºó£¬ÒÒ¿ª³µÒªÔÚ20·ÖÖÓÄÚ×·Éϼף¬ÎÊÒҵijµËÙÖÁÉÙÊǶàÉÙ£¿£¨Áв»µÈʽ½â´ð£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸