精英家教网 > 初中数学 > 题目详情
8.在△ABC中,已知BD和CE分别是边AC、AB上的中线,且BD⊥CE,垂足为O.若OD=2cm,OE=4cm,则线段AO的长度为4$\sqrt{5}$cm.

分析 连接AO并延长,交BC于H,根据勾股定理求出DE,根据三角形中位线定理求出BC,根据直角三角形的性质求出OH,根据重心的性质解答.

解答 解:连接AO并延长,交BC于H,
由勾股定理得,DE=$\sqrt{O{E}^{2}+O{D}^{2}}$=2$\sqrt{5}$,
∵BD和CE分别是边AC、AB上的中线,
∴BC=2DE=4$\sqrt{5}$,O是△ABC的重心,
∴AH是中线,又BD⊥CE,
∴OH=$\frac{1}{2}$BC=2$\sqrt{5}$,
∵O是△ABC的重心,
∴AO=2OH=4$\sqrt{5}$,
故答案为:4$\sqrt{5}$.

点评 本题考查的是重心的概念和性质,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年贵州省七年级下学期第一次月考数学试卷(解析版) 题型:单选题

下列说法中不正确的是(  )

A. 是2的平方根 B. 是2的平方根

C. 2的平方根是 D. 2的算术平方根是

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.【感知】如图①,△ABC是等边三角形,点D、E分别在AB、BC边上,且AD=BE,易知:△ADC≌△BEA.
【探究】如图②,△ABC是等边三角形,点D、E分别在边BA、CB的延长线上,且AD=BE,△ADC与△BEA还全等吗?如果全等,请证明:如果不全等,请说明理由.
【拓展】如图③,在△ABC中,AB=AC,∠1=∠2,点D、E分别在BA、FB的延长线上,且AD=BE,若AF=$\frac{3}{2}$CF=2BE,S△ABF=6,则S△BCD的大小为13.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系xOy中,点A、B的坐标分别为(0,3)、(7,0),点C在第一象限,AC∥x轴,∠OBC=45°.
(1)求点C的坐标;
(2)点D在线段AC上,CD=1,点E的坐标为(n,0),在直线DE的右侧作∠DEG=45°,直线EG与直线BC相交于点F,设BF=m,当n<7且n≠0时,求m关于n的函数解析式,并直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康.在2017年2月周末休息期间,某校九年级一班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计表及统计图,观察并回答下列问题:
类别雾霾天气的主要成因百分比
A工业污染45%
B汽车尾气排放m
C城中村燃煤问题15%
D其他(绿化不足等)n
(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;
(2)若该市有800万人口,请你估计持有B,C两类看法的市民共有多少人?
(3)小明同学在四个质地、大小、形状都完全相同的小球上标记A,B,C,D代表四个雾霾天气的主要成因中,放在一个不透明的盒子中,他先随机抽取一个小球,放回去,再随机抽取一个小球,请用画树状图或列表的方法,求出小颖同学刚好抽到B和D的概率.(用A,B,C,D表示各项目)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解不等式组:$\left\{\begin{array}{l}{2x≤3(x+2)-5①}\\{\frac{1-2x}{4}+\frac{1}{5}<0②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.
(1)当动点P落在第①部分时,如图1,过点P作PQ∥AC,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,如图2,过点P作PQ∥AC,求证:∠APB+∠PAC+∠PBD=360°;
(3)当动点P落在第③部分时,且在直线AB右侧时,如图3,过点作PQ∥AC,试探究∠PAC,∠APB,∠PBD之间的等量关系,写出你发现的结论并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,已知AC∥ED,AB∥FD,∠A=55°,求∠EDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,直线y=-x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+$\frac{1}{2}$x+c经过B、C两点,点E是直线BC上方抛物线上的一动点.

(1)求抛物线的解析式;
(2)过点E作y轴的平行线交直线BC于点M、交x轴于点F,当S△BEC=$\frac{3}{2}$时,请求出点E和点M的坐标;
(3)在(2)的条件下,当E点的横坐标为1时,在EM上是否存在点N,使得△CMN和△CBE相似?如果存在,请直接写出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案