精英家教网 > 初中数学 > 题目详情
如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为( )
A.
B.
C.3
D.2
【答案】分析:因为PQ为切线,所以△OPQ是Rt△.又OQ为定值,所以当OP最小时,PQ最小.根据垂线段最短,知OP=3时PQ最小.根据勾股定理得出结论即可.
解答:解:∵PQ切⊙O于点Q,
∴∠OQP=90°,
∴PQ2=OP2-OQ2
而OQ=2,
∴PQ2=OP2-4,即PQ=
当OP最小时,PQ最小,
∵点O到直线l的距离为3,
∴OP的最小值为3,
∴PQ的最小值为=
故选B.
点评:此题综合考查了切线的性质及垂线段最短等知识点,如何确定PQ最小时点P的位置是解题的关键,难度中等偏上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为5,AB=5
3
,C是圆上一点,则∠ACB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为3,直径AB⊥弦CD,垂足为E,点F是BC的中点,那么EF2+OF2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为
5
,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有
 
个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为13cm,弦AB∥CD,两弦位于圆心O的两侧,AB=24cm,CD=10cm,求AB和CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径为5,P是弦MN上的一点,且MP:PN=1:2.若PA=2,则MN的长为
6
2
6
2

查看答案和解析>>

同步练习册答案