精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠C90°,点OD分别为ABBC的中点,连接OD,作⊙OAC相切于点E,在AC边上取一点F,使DFDO,连接DF

1)判断直线DF与⊙O的位置关系,并说明理由;

2)当∠A30°CF时,求⊙O的半径.

【答案】1)结论:DF是⊙O的切线.理由见解析;(2OE=1

【解析】

1)结论:DF是⊙O的切线.作OGDFG.连接OE.想办法证明OG=OE即可解决问题;

2)由FAFD是⊙O的切线,推出FG=FE,设FG=FE=x,由△OGD≌△DCFAAS),推出DG=CF=,推出OD=DF=+x,由AC=2ODCE=OD,推出AE=EC=OD=+x,由∠A=30°,推出CD=OE=,在RtDCF中,根据DF2=CD2+CF2,构建方程即可解决问题;

1)结论:DF是⊙O的切线.

理由:作OGDFG.连接OE

BD=DCBO=OA

ODAC

∴∠ODG=DFC

∵∠OGD=DCF=90°OD=DF

∴△OGD≌△DCFAAS),

OG=CD

AC是⊙O的切线,

OEAC

∴∠AEO=C=90°

OEBC

ODCD

∴四边形CDOE是平行四边形,

CD=OE

OG=OE

DF是⊙O的切线.

2)∵FAFD是⊙O的切线,

FG=FE,设FG=FE=x

∵△OGD≌△DCFAAS),

DG=CF=

OD=DF=+x

AC=2ODCE=OD

AE=EC=OD=+x

∵∠A=30°

CD=OE=

RtDCF中,∵DF2=CD2+CF2

∴(+x2=2+2

解得x=---(舍弃),

OE==1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.

(1)①直接写出点B的坐标;②求抛物线解析式.

(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.

(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.

成绩

人数(频数)

百分比(频率)

0

5

0.2

10

5

15

0.4

20

5

0.1

根据表中已有的信息,下列结论正确的是(  )

A. 共有40名同学参加知识竞赛

B. 抽到的同学参加知识竞赛的平均成绩为10分

C. 已知该校共有800名学生,若都参加竞赛,得0分的估计有100人

D. 抽到同学参加知识竞赛成绩的中位数为15分

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从热气球C上测得两建筑物AB底部的俯角分别为30°60度.如果这时气球的高度CD90米.且点ADB在同一直线上,求建筑物AB间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调査的学生共有   人,扇形统计图中基本了解部分所对应扇形的圆心角为   °;

(2)请补全条形统计图;

(3)若该中学共有学生1600人,请根据上述调查结果,估计该学校学生中对校园安全知识达到了解基本了解程度的总人数;

(4)若从对校园安全知识达到了解程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD中,MN分别是ADBC的中点.

1)求证:四边形AMCN是平行四边形;

2)若ACCD,求证四边形AMCN是矩形;

3)若∠ACD90°,求证四边形AMCN是菱形;

4)若ACCD,∠ACD90°,求证四边形AMCN是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y= y=kx2+kk≠0)在同一直角坐标系中的图象可能是(   )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC ∠BAC=90°,AB=AC,DBC上一动点连接AD,过点AAEAD,并且始终保持AE=AD,连接CE.

(1)求证△ABD △ACE

(2)若AF平分∠DAEBCF,探究线段BD,DF,FC之间的数量关系并证明

(3)在(2)的条件下BD=3,CF=4,AD的长.

查看答案和解析>>

同步练习册答案