精英家教网 > 初中数学 > 题目详情
11.①用适当的方法解方程:2(x-3)2=3(3-x)
②二次函数y=x2+bx+c的图象过点B(0,-2),它与反比例函数y=-$\frac{8}{x}$的图象交于点A(m,4),试求这个二次函数的解析式.

分析 ①先移项,再提取公因式,把原式化为两个因式积的形式即可得出结论;
②把A(m,4)代入反比例函数y=-$\frac{8}{x}$求出m的值,故可得出A点坐标,再把A、B两点坐标代入二次函数y=x2+bx+c,求出b、c的值即可.

解答 解:①移项得,2(x-3)2-3(3-x)=0,
提取公因式得,(x-3)(2x-6+3)=0,即(x-3)(2x-3)=0,解得x1=3,x2=$\frac{3}{2}$;

②∵反比例函数y=-$\frac{8}{x}$的图象过点A(m,4),
∴-$\frac{8}{m}$=4,解得m=-2,
∴A(-2,4).
∵二次函数y=x2+bx+c的图象过点B(0,-2),A(-2,4),
∴$\left\{\begin{array}{l}c=-2\\ 4-2b+c=4\end{array}\right.$,解得$\left\{\begin{array}{l}c=-2\\ b=-1\end{array}\right.$,
∴二次函数的解析式为y=x2-x-2.

点评 本题考查的是待定系数法求二次函数的解析式,熟知二次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,直线y=kx-1与x轴、y轴分别交与B、C两点,OC=2OB,点A是直线BC上一动点.
(1)求B点的坐标和k的值;
(2)若点A(x,y)在第一象限.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;
(3)当点A运动到什么位置时,△AOB的面积是$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.有一座抛物线形拱桥,以坐标原点O为抛物线的顶点,以y轴为抛物线的对称轴建立如图所示的坐标系,桥下面在正常水位AB时,宽20米,水位上升3米就达到警戒线CD,这时水面宽为10米.求抛物线的解析式及警戒线CD到拱桥顶O的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知一次函数的图象经过点P(0,2),且与两坐标轴截得的直角三角形的面积为4,求一次函数的解析式,并画出图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在同一平面直角坐标系中,画出下列函数的图象:①y=3x+1;②y=-3x+1.观察图象,回答下列问题.
(1)这两个函数的图象有什么共同特点?
(2)两条直线与y轴的交点坐标分别是什么?它们与函数表达式y=kx+b中的哪个量有关?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,正方形ABCD,点M在CD上,在AC上确定点N,使DN+MN最小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.函数y=x+3与y=$-\frac{2}{x}$的图象的交点为(a,b),则$\frac{1}{a}-\frac{1}{b}$的值是(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.关于x的二次函数y=-x2+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.
(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.不透明的袋子中装有6个球,其中有2个红球、3个绿球和1个蓝球,这些球除颜色外无其它差别.从袋子中随机取出1个球,则它是红球的概率为$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案