精英家教网 > 初中数学 > 题目详情
23、已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.
(1)求证△ABC是等边三角形;
(2)若AE=1,求半圆O的半径.
分析:本题已知DE是圆的切线,可以得到OD⊥AB,易证△BDO是等边三角形,进而可以证出△ABC是等边三角形.
解答:(1)证明:连接OD;
∵DE是圆的切线,
∴OD⊥DE,
又∵DE⊥AC,
∴OD∥AC;
∵AB=AC,
∴BD=OD;
又∵OD=OB,
∴OB=OD=BD,
∴△BDO是等边三角形,
∴∠B=60°;
∵AB=AC,
∴△ABC是等边三角形.
(2)解:连接CD,则
CD⊥AB,
∴BD=AD=OB,
在直角△ADE中,
∠A=60°,
∴AD=2AE=2,
∴OB=AD=2.
点评:本题主要考查了等边三角形的证明方法,并且本题主要运用了切线的性质定理,切线垂直于过切点的半径.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•启东市一模)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,半径为2,AB=6,求线段AD、AE与劣弧DE所围成的图形面积.(结果保留根号和π)《根据2011江苏扬州市中考试题改编》

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在△ABC中,∠C=120°,边AC的垂直平分线DE与AC、AB分别交于点D和点E.
(1)作出边AC的垂直平分线DE;
(2)当AE=BC时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:专项题 题型:证明题

已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连结BD,CE,BD与CE交于O,连结AO,
           ∠1=∠2;
求证:∠B=∠C

查看答案和解析>>

同步练习册答案