精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.
(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;
(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.

【答案】分析:(1)如图,设AB的中点为C,连接OP,由于AB是圆的切线,故△OPC是直角三角形,所以当OC与OP重合时,OC最短;
(2)分两种情况:如图(1),当四边形APOQ是正方形时,△OPA,△OAQ都是等腰直角三角形,可求得点Q的坐标为(,-),如图(2),可求得∠QOP=∠OPA=90°,由于OP=OQ,故△OPQ是等腰直角三角形,可求得点Q的坐标为(-).
解答:解:(1)线段AB长度的最小值为4,
理由如下:
连接OP,
∵AB切⊙O于P,
∴OP⊥AB,
取AB的中点C,
则AB=2OC;
当OC=OP时,OC最短,
即AB最短,
此时AB=4;

(2)设存在符合条件的点Q,
如图①,设四边形APOQ为平行四边形;
∵∠APO=90°,
∴四边形APOQ为矩形,
又∵OP=OQ,
∴四边形APOQ为正方形,
∴OQ=QA,∠QOA=45°;
在Rt△OQA中,根据OQ=2,∠AOQ=45°,
得Q点坐标为(,-);
如图②,设四边形APQO为平行四边形;
∵OQ∥PA,∠APO=90°,
∴∠POQ=90°,
又∵OP=OQ,
∴∠PQO=45°,
∵PQ∥OA,
∴PQ⊥y轴;
设PQ⊥y轴于点H,
在Rt△OHQ中,根据OQ=2,∠HQO=45°,
得Q点坐标为(-).
∴符合条件的点Q的坐标为(,-)或(-).
点评:本题利用了切线的性质,平行四边形的性质,等腰直角三角形的性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案