精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使CF=BE,连接EF,交BC于点D。求证DE=DF.

 

 

【答案】

证明见解析

【解析】

试题分析:作FH∥AB交BC延长线于H,构造全等三角形:△DBE和△FHE,由平行线得出两对内错角相等,只需要再证一组边对应相等,根据已知条件,以及所作平行线,可证出HF=BD,三角形全等可证.

试题解析:

证明:作FH∥AB交BC延长线于H,

∵FH∥AB,

∴∠FHC=∠B.

又∵AB=AC,

∴∠B=∠ACB.

又∠ACB=∠FCH,

∴∠FHE=∠FCH.

∴CF=HF.

又∵BD=CF,

∴HF=BD.

又∵FH∥AB,

∴∠BDE=∠HFE,∠DBE=∠FHE.

∴△DBE≌△FHE(ASA).

∴DE=EF.

考点:1.等腰三角形的判定与性质;2.全等三角形的判定与性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案