精英家教网 > 初中数学 > 题目详情
9.已知∠AOB=30°,点P、Q分别是边OA、OB上的定点,OP=3,OQ=4,点M、N是分别是边OA、OB上的动点,则折线P-N-M-Q长度的最小值是5.

分析 作P关于OB的对称点P′,作Q关于OA的对称点Q′,连接P′Q′,即为折线P-N-M-Q长度的最小值.

解答 解:作P关于OB的对称点P′,作Q关于OA的对称点Q′,
连接P′Q′,即为折线P-N-M-Q长度的最小值.
根据轴对称的定义可知:∠NOP′=∠AOB=30°,∠OPP′=60°,
∴△OPP′为等边三角形,△OQQ′为等边三角形,
∴∠P′OQ′=90°,
∴在Rt△P′OQ′中,
P′Q′=$\sqrt{{3}^{2}+{4}^{2}}$=5.
故答案为5.

点评 本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,CA=CB,CD=CE,∠ACB=∠DCE=α,连AD,BE相交于H,连CH
(1)如图1,当α=60°时,求∠AHE与∠BHC;
(2)如图2,当α=90°时,求∠AHE与∠BHC;
(3)如图3,当α为锐角时,求∠AHE与∠BHC;
(4)如图4,当α为钝角时,求∠AHE与∠BHC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.小明有5张写着不同数字的卡片:

请你分别从中取出2张卡片,使这2张卡片上的数字
(1)相加的和最小,列式并计算出结果;
(2)相乘的积最大,列式并计算出结果;
(3)进行加或乘或除或乘方运算使得结果最大,列式并计算出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:BE=CE (要求:不用三角形全等的方法)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如图,在△ABC中,AB=AC=2BC,以点B为圆心,BC长为半径作弧,与AC交于点D.若AC=4,则线段CD的长为1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,将一个多边形按图所示减掉一个角,所得多边形的内角和为1800°,求原多边形的边数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知如图:射线MN⊥AB于点M,点C从M出发,以1cm/s的速度沿射线MN运动,AM=1,MB=4,设运动时间为ts,①当△ABC为等腰三角形时,求t的值;②当△ABC为直角三角形时,求t的值;③点C在运动的过程中,若△ABC为钝角三角形,则t的取值范围是0<t<2;若△ABC为锐角三角形,则t的取值范围是t>2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+1)x+k2+k=0的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,则k的值为5或4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,直线y=2x+2$\sqrt{3}$与x、y轴分别交于A、B两点,以OB为边在y轴左侧作等边△OBC,将△OBC沿y轴上下平移,使点C的对应点C′恰好落在直线AB上,则点C'的坐标为(-3,-6+2$\sqrt{3}$).

查看答案和解析>>

同步练习册答案