精英家教网 > 初中数学 > 题目详情
11.点P的坐标为(3a-2,8-2a),若点P到两坐标轴的距离相等,则a的值是(  )
A.$\frac{2}{3}$或4B.-2或6C.-$\frac{2}{3}$或-4D.2或-6

分析 根据题意列出绝对值方程,再求解即可.

解答 解:∵点P(3a-2,8-2a)到两坐标轴的距离相等,
∴|3a-2|=|8-2a|,
∴3a-2=8-2a或3a-2=-(8-2a),
解得a=2或a=-6.
故选D.

点评 本题考查了点的坐标,读懂题目信息,列出绝对值方程是解题的关键,难点在于将绝对值方程转化为一般方程然后求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.若|-a|=|-5$\frac{1}{3}$|,则a=±5$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.一个正多边形的中心角是30°,则这个多边形是正十二边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.当$\frac{3-a}{2}$>3(a-2)时,求不等式$\frac{a(x-4)}{3}$>x-a的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(s)(0<t<4).根据上面的信息,解答下面的问题:
(1)当t为何值时,PQ⊥AB?
(2)当点Q在BE之间运动时,设五边形PQBCD的面积为y(cm2),求y与t之间的函数表达式.
(3)t为何值时,△EPQ为等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD为54°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若关于x的不等式组$\left\{\begin{array}{l}x>a\\ x<2\end{array}$恰有3个整数解,则字母a的取值范围是-2≤a<-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如果一个等腰三角形的两边长分别为2cm和5cm,那么它的周长是(  )
A.9 cmB.12 cmC.9 cm或12 cmD.以上答案都不对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.分解因式:a2-6ab+9b2-2a+6b-3=(a-3b-3)(a-3b+1).

查看答案和解析>>

同步练习册答案