精英家教网 > 初中数学 > 题目详情
16.如图,将三角形ABC放在每个小正方形的边长为1的网格中,点A,点B,点C,点P均落在格点上.
(1)计算三角形ABC的周长等于3$\sqrt{5}$+5.
(2)请在给定的网格内作三角形ABC的内接矩形EFGH,使得点E,H分别在边AB,AC上,点F,G在边BC上,且使矩形EFGH的周长等于线段BP长度的2倍,并简要说明你的作图方法(不要求证明)

分析 (1)根据勾股定理分别求出AB、AC即可解决问题.
(2)在线段AB上截取BE=$\frac{1}{3}$AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,
由△AEH∽△ABC,得$\frac{EH}{BC}$=$\frac{AN}{AM}$,列出方程即可解决.

解答 解:(1)∵AB=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,AC=$\sqrt{{2}^{2}+{4}^{2}}$=2$\sqrt{5}$,BC=5,
∴AB+AC+BC=3$\sqrt{5}$+5,
∴△ABC的周长为3$\sqrt{5}$+5.
故答案为3$\sqrt{5}$+5.
(2)在线段AB上截取BE=$\frac{1}{3}$AB,作EF⊥BC于F,EH∥BC交AC于H,作HG⊥BC于G,矩形EFGH计算所求作的矩形.
理由:作AM⊥BC于M,交EH于N,设EF=x,则MN=EF=x,
∵矩形EFGH的周长为8,
∴EH=4-x,
∵EH∥BC,
∴△AEH∽△ABC,
∴$\frac{EH}{BC}$=$\frac{AN}{AM}$,
∴$\frac{2-x}{2}=\frac{4-x}{5}$,
∴x=$\frac{2}{3}$,
∴EF=$\frac{2}{3}$,
∵EF∥AM,
∴$\frac{BE}{BA}$=$\frac{EF}{AM}$=$\frac{\frac{2}{3}}{2}$=$\frac{1}{3}$,
∴BE=$\frac{1}{3}$AB,
∴当BE=$\frac{1}{3}$AB时,矩形EFGH的周长等于线段BP长度的2倍.

点评 本题考查矩形性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是先利用相似三角形的性质求出矩形的长、宽,然后确定点E位置,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:
①△ABE≌△DCF;②△DPH是等腰三角形;③PF=$\frac{2\sqrt{3}-3}{3}$AB;④$\frac{{S}_{△PBD}}{{S}_{四边形ABCD}}$=$\frac{\sqrt{3}-1}{4}$.
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下图是某中学的平面示意图,每个正方形格子的边长为1,如果校门所在位置的坐标为(2,4),小明所在位置的坐标为(-6,-1),那么坐标(3,-2)在示意图中表示的是(  )
A.图书馆B.教学楼C.实验楼D.食堂

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=50°,则∠2的度数为(  )
A.105°B.110°C.115°D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,正方形ABCD的边长为10cm,E是AB上一点,BE=4cm,P是对角线AC上一动点,则PB+PE的最小值是2$\sqrt{34}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,抛物线y=ax2+bx+c经过点A(5,0),B(-3,0),C(0,4),过C作CD∥x轴交抛物线于D,连结BC、AD两个动点P、Q分别从A、B两点同时出发,都以每秒1个单位长度的速度运动,其中,点P沿着线段AB向B点运动,点Q沿着折线B→C→D的路线向D点运动,设这个两个动点运动的时间为t(秒)(0<t<7),△PQB的面积记为S.
(1)求这条抛物线的函数关系式;
(2)求S与t的函数关系式;
(3)当t为何值时,S有最大值,最大值是多少?
(4)是否存在这样的t值,使得△PQB是直角三角形?若存在,请直接写出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)如果点P为锐角△ABC的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若PA=3,PC=4,则PB=2$\sqrt{3}$.
(2)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD 相交于P点.如图(2)
①求∠CPD的度数;
②求证:P点为△ABC的费马点.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.2016的相反数是(  )
A.2016B.-2016C.$\frac{1}{2016}$D.-$\frac{1}{2016}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.
(1)分别求出抛物线与直线的解析式;
(2)求线段PQ长度的最大值;
(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案