精英家教网 > 初中数学 > 题目详情
7.如图,点A、B在⊙O上,点C在⊙O外,连接AB和OC交于D,且OB⊥OC,AC=CD.
(1)判断AC与⊙O的位置关系,请证明你的结论;
(2)若OC=17,OD=2,求⊙O的半径及tanB.

分析 (1)根据已知条件“∠CAD=∠CDA”、对顶角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根据等腰三角形OAB的两个底角相等、直角三角形的两个锐角互余的性质推知∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,可得AC是⊙O的切线.
(2)由勾股定理求出OA,得出OB,由三角函数的定义求出tanB即可.

解答 (1)证明:连接OA,如图所示:
∵AC=CD,
∴∠CAD=∠CDA,
∵∠BDO=∠CDA,
∴∠BDO=∠CAD,
又∵OA=OB,
∴∠B=∠OAB,
∵OB⊥OC,
∴∠B+∠BDO=∠OAB+∠CAD=90°,
即∠OAC=90°,
∴AC是⊙O的切线;
(2)解:∵OC=17,OD=2,
∴AC=CD=OC-OD=15,
∴OA=$\sqrt{O{C}^{2}-A{C}^{2}}$=8,
即⊙O的半径为8,
∵OB=OA=8,
∴tanB=$\frac{OD}{OB}$=$\frac{1}{4}$.

点评 此题考查了切线的判定、勾股定理、等腰三角形的性质、三角函数值的求法.此题难度适中,由勾股定理求出半径是解决问题(2)的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,点M(14,0)是x轴上的点,点P的坐标是(9,12),连接OP,PM.
(1)求线段PM的长;
(2)在第一象限内找一点N,使四边形OPNM是平行四边形,画出图形并求出点N的坐标(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知二次函数y=x2-2x+c的图象沿x轴平移后经过(-1,y1),(5,y2)两点若y1>y2,则图象可能的平移方式是(  )
A.向左平移5单位B.向左平移3单位C.向右平移1单位D.向右平移2单位

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:
(1)(-2)2+(-$\frac{1}{2}$)-1-(3-π)0-|-2|;
(2)(x+2)(2x-1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.为了了解大气污染情况,某学校兴趣小组搜集了2017年上半年中120天郑州市的空气质量指数,绘制了如下不完整的统计图表:
空气质量指数统计表
级别 指数天数百分比
0-5024m
51-100a40%
轻度污染101-1501815%
中度污染151-2001512.5% 
重度污染201-30097.5%
严重污染大于30065%
合计120100%
请根据图表中提供的信息,解答下面的问题:
(1)空气质量指数统计表中的a=48,m=20%;
(2)请把空气质量指数条形统计图补充完整:
(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是72度;
(4)请通过计算估计郑州市2017年(365天)中空气质量指数大于100的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,将△ABC绕点B逆时针旋转60°得△DBE,连接CD,若AB=AC=5,BC=6,则CD=$4+3\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,矩形AOCB的顶点B在反比例函数$y=\frac{k}{x}(k>0$,x>0)的图象上,且AB=3,BC=8.若动点E从A开始沿AB向B以每秒1个单位长度的速度运动,同时动点F从B开始沿BC向C以每秒2个单位长度的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动,设运动时间为t秒.
(1)求反比例函数的表达式.
(2)当t=1时,在y轴上是否存在点D,使△DEF的周长最小?若存在,请求出△DEF的周长最小值;若不存在,请说明理由.
(3)在双曲线上是否存在一点M,使以点B、E、F、M为顶点的四边形是平行四边形?若存在,请直接写出满足条件t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.定义:有三个角相等的四边形叫做三等角四边形.
(1)在三等角四边形ABCD中,∠A=∠B=C,则∠A的取值范围为60°<∠BAD<120°.
(2)如图①,折叠平行四边形DEBF,使得顶点E、F分别落在边BE、BF上的点A、C处,折痕为DG、DH.
求证:四边形ABCD为三等角四边形;
(3)如图②,三等角四边形ABCD中,∠A=∠B=∠C,若AB=5,AD=$\sqrt{26}$,DC=7,则BC的长度为$\frac{6}{13}$$\sqrt{26}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,有3本和6本的课本整齐地叠放在讲台上(每本书的厚度相等),请根据图中所给出的信息,解答下列问题:
(1)当讲台上整齐叠放的课本为x(本)时,请写出这摞课本距离地面的最大高度(用含x的式子);
(2)若从桌面上整齐叠放成一摞的70本课本中取走18本,求余下的一摞课本距离地面的最大高度.

查看答案和解析>>

同步练习册答案