精英家教网 > 初中数学 > 题目详情
16.解方程:
(1)2x2-x-3=0
(2)(y-3)2+4y(y-3)=0.

分析 (1)把方程左边式子进行因式分解得到(2x-3)(x+1)=0,再解两个一元一次方程即可;
(2)提取公因式(y-3)得到(y-3)(5y-3)=0,再解两个一元一次方程即可.

解答 解:(1)∵2x2-x-3=0,
∴(2x-3)(x+1)=0,
∴x+1=0或2x-3=0,
∴x1=-1,x2=$\frac{3}{2}$;
(2)∵(y-3)2+4y(y-3)=0,
∴(y-3)(y-3+4y)=0,
∴(y-3)(5y-3)=0,
∴5y-3=0或y-3=0,
∴y1=$\frac{3}{5}$,y2=3.

点评 本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,一只运载火箭从地面L处发射,当卫星到达A点时,从位于地面R处的雷达站测得AR的距离是6km,仰角为43°,1s后,火箭到达B点,此时测得仰角为45.54°,这个火箭从A到B的平均速度是多少(精确到0.01km/s)?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,平面内有公共端点的八条射线0A,OB,OC,OD,OE,OF,OG,OH,从射线OA开始般逆时针方向依次在射线上写除数字1,2,3,4,5,6,7,8…
(1)“24”在射线OH上.
(2)请任意写出三条射线上数字的排列规律.
(3)“2015”在哪条射线上?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知平面直角坐标系中,A(-1,2),B(2,1),线段AB交y轴于C点
(1)求点C的坐标;
(2)在y轴上的点P,若△ABP≤6,求出P点纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在平面直角坐标系中,点P在第四象限,且点P到x轴的距离是3,到y轴的距离是2,则点P的坐标为(  )
A.(-2,3)B.(-3,2)C.(3,2)D.(2,-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,点O是等边△ABC内一点,将△BOC绕点C按顺时针方向旋转60°得到△ADC,连接OA和OD.
(1)已知:∠BOC=150°.求证:△COD是等边三角形;△AOD是直角三角形.
(2)若∠AOB=110°,则∠BOC=125或110或140度时,△AOD是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,在△ABC中,∠A=40°,有一块直角三角板DEF的两条直角边DE、DF分别经过点B、C,若直角顶点D在三角形外部,则∠ABD+∠ACD的度数是230度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,延长BC到E,使得CE=AD,连接DE.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,BC=5,求S梯形ABCD

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知二次函数y=-x2+4x-2与x轴交于A,B两点,与y轴交于点C,则△ABC的面积为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案