分析 通过证明△AMD≌△CMN得到对应边AD=CN;结合已知条件“CN∥AB”判定四边形ADCN是平行四边形;再根据“有一内角为直角的平行四边形是矩形”证得结论.
解答 证明:∵CN∥AB,
∴∠DAC=∠NCA,
在△AMD和△CMN中,
∵$\left\{\begin{array}{l}{∠DAC=∠NCA}\\{MA=MC}\\{∠AMD=∠CMN}\end{array}\right.$,
∴△AMD≌△CMN(ASA),
∴AD=CN.
又∵AD∥CN,
∴四边形ADCN是平行四边形.
又∵∠BAN=90度,
∴四边形ADCN是矩形.
点评 本题考查了矩形的判定.题设中出现一个直角或垂直时,常采用“有一个角是直角的平行四边形是矩形”来判定矩形.
科目:初中数学 来源: 题型:解答题
选项 | 帮助很大 | 帮助较大 | 帮助不大 | 几乎没有帮助 |
人数 | a | 540 | 270 | b |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 不变 | B. | 扩大2倍 | C. | 缩小2倍 | D. | 扩大4倍 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com