科目:初中数学 来源: 题型:
观察控究,完成证明和填空.
如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形.
(1)求证:四边形EFGH是平行四边形;
(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:
当四边形ABCD变成平行四边形时,它的中点四边形是__________;
当四边形ABCD变成矩形时,它的中点四边形是__________;
当四边形ABCD变成菱形时,它的中点四边形是__________;
当四边形ABCD变成正方形时,它的中点四边形是__________;
(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?
查看答案和解析>>
科目:初中数学 来源: 题型:
古希腊数学家把数1,3,6,10,15,21,……叫做三角形数,它有一定的规律性,若把第一个三角形数记为a,第二个三角数形记为a,……,第n个三角形数记为a,
计算a- a,a- a……由此推算a-a= a=
查看答案和解析>>
科目:初中数学 来源: 题型:
随着人民生活水平的不断提高,萧山区家庭轿车的拥有量逐年增加.据统计,家景园小区2008年底拥有家庭轿车144辆,2010年底家庭轿车的拥有量达到225辆.
(1) 若该小区2008年底到2010年底家庭轿车拥有量的年平均增长率都相同,求该小区到2011年底家庭轿车将达到多少辆?
(2) 为了缓解停车矛盾,该小区决定投资25万元再建造若干个停车位.据测算,建造费用分别为室内车位6000元/个,露天车位2000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的3倍,但不超过室内车位的4.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线(k>0)和x轴上,已知点B1(1,1),B2(3,2),则Bn的坐标是_____ _________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com