【题目】我市举行“第十七届中小学生书法大赛”作品比赛,已知每幅参赛作品成绩记为,组委会从1000幅书法作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制成如下统计图表.
分数段 | 频数 | 百分比 |
38 | 0.38 | |
________ | 0.32 | |
________ | ________ | |
10 | 0.1 | |
合计 | ________ | 1 |
根据上述信息,解答下列问题:
(1)这次书法作品比赛成绩的调查是采用_____(填“普查”或“抽样调查”),样本是_____.
(2)完成上表,并补全书法作品比赛成绩频数直方图.
(3)若80分(含80分)以上的书法作品将被评为等级奖,试估计全市获得等级奖的数量.
【答案】(1)抽样调查;100幅书法作品;(2)32,20,0.2;(3)300幅.
【解析】
(1)根据题意可知,从1000的作品中抽取了100个,属于抽样调查,即可得到答案;再根据分数段由60≤x<70频数和频率求得总数,
(2)由60≤x<70频数和频率求得总数,根据频率=频数÷总数求得频数或频率即可,根据所求数据补全图形即可得;
(3)总数乘以80分以上的百分比即可.
解:(1)根据题意,组委会从1000幅书法作品中随机抽取了部分参赛作品,统计了它们的成绩可知,这次书法作品比赛成绩的调查是采用抽样调查;
样本容量为:,
∴样本是:100幅书法作品的比赛成绩;
故答案为:抽样调查,100幅书法作品的比赛成绩;
(2)把表格补充完整,如下表:
故答案为: 32,20,100,0.2;
补全书法作品比赛成绩频数直方图如图所示;
(3)1000×(0.2+0.1)=300(幅),
答:全市获得等级奖的幅数为300幅.
科目:初中数学 来源: 题型:
【题目】如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.
(1)求抛物线的表达式;
(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;
(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,可以单独用正三角形、正方形或正六边形铺满地面,如果我们要同时用两种不同的正多边形铺满地面,可以设计出几种不同的组合方案?
问题解决:
猜想1:是否可以同时用正方形、正八边形两种正多边形组合铺满地面?
验证1并完成填空:在铺地面时,设围绕某一个点有x个正方形和y个正八边形的内角可以拼成一个周角.根据题意:可得方程①: ,
整理得②: ,
我们可以找到方程的正整数解为③: .
结论1:铺满地面时,在一个顶点周围围绕着④个正方形和⑤个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以铺满地面.
猜想2:是否可以同时用正三角形和正六边形两种正多边形组合铺满地面?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.
经过调查,得到如下数据:
销售单价x(元/件) | … | 20 | 30 | 40 | 50 | 60 | … |
每天销售量y(件) | … | 500 | 400 | 300 | 200 | 100 | … |
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系式,并求出函数关系式.
(2)物价部门规定,该工艺品的销售单价最高不超过45元/件,当销售单价x定为多少时,工艺厂试销该工艺品每天获得的利润8000元?(利润=销售总价﹣成本总价)
(3)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在锐角中,是边上的高. ,且.连接,交的延长线于点,连接.下列结论:①;②;③;④.其中一定正确的个数是( )
A.个B.个
C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1。
(2)若△ABC内有一点P(a,b),则经过(1)中的两次变换后点P的坐标变为_____________
(3)作出△ABC关于坐标原点O成中心对称的△A2B2C2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).
(1)求证: ;
(2)求△AMN的面积(用a,b,c的代数式表示);
(3)当∠MAN=45°时,求证:c2=2ab.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AF=BE,AE与DF相交于点O.
(1)求证:△DAF≌△ABE;
(2)写出线段AE、DF的数量和位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com