精英家教网 > 初中数学 > 题目详情

对于任意实数x、y,定义新运算“*”为x*y=x+y+xy,则(  )

A.运算*满足交换律,但不满足结合律
B.运算*不满足交换律,但满足结合律
C.运算*既不满足交换律,也不满足结合律
D.运算*既满足交换律,也满足结合律

D

解析试题分析:由于定义新运算“*”为x*y=x+y+xy,根据法则交换xy的位置判定交换律,然后判定x*(y*z)和(x*y)*z是否相等,由此即可判定选择项.
解:∵定义新运算“*”为x*y=x+y+xy,
∴y*x=x+y+xy,
∴x*y=y*x,
∴运算*满足交换律;
∵x*(y*z)=x*(y+z+yz)=x+y+z+yz+x(y+z+yz)=x+y+z+yz+xy+xz+xyz,
(x*y)*z=(x+y+xy)*z=x+y+xy+z+z(x+y+xy)=x+y+z+yz+xy+xz+xyz,
∴x*(y*z)=(x*y)*z;
运算*满足结合律.
故选D.
考点:整式的加减;单项式乘单项式.
点评:此题主要考查了整式的加减运算、多项式乘以单项式等运算,解题的关键是首先整式运算的法则,同时也理解运算律,才能正确解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如果我们用“♀”、“♂”来定义新运算:对于任意实数a,b,都有a♀b=a,a♂b=b,例如3♀2=3,3♂2=2.则(勐♀捧)♀(中♂学)=

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北仑区二模)对于任意实数a、b、c、d,定义有序实数对(a,b)与(c,d)之间的运算“△”为:(a,b)△(c,d)=(ac+bd,ad+bc).如果对于任意实数u、v,都有(u,v)△(x,y)=(u,v),那么(x,y)为
x=1,y=0
x=1,y=0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北)定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:
2⊕5=2×(2-5)+1
=2×(-3)+1
=-6+1
=-5???
(1)求(-2)⊕3的值;
(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次方程x2-mx-2=0.
(1)若-1是方程的一个根,求m的值和方程的另一个根.
(2)对于任意实数m,判断方程根的情况,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

用“☆”定义新运算:对于任意实数a、b,都有a☆b=b2+a.例如2☆3=32+2=11,那么(-8)☆3=
67
67

查看答案和解析>>

同步练习册答案