分析 根据直线解析式判断出直线与x轴的夹角的正切值为$\frac{1}{2}$,从而得到直线与正方形的边围成的三角形是直角三角形,再根据点A的坐标求出正方形的边长并得到变化规律表示出第n个正方形的边长,然后根据阴影部分的面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积列式求解并根据结果得出规律,利用规律解答即可.
解答 解:如图,设正方形ABCD的边长为a,正方形DEFG的边长为B,
∴S△ACF=S△ACD+S梯形ADEF-S△CEF
=$\frac{1}{2}$a2+$\frac{1}{2}$(a+b)×b-$\frac{1}{2}$(a+b)×b=$\frac{1}{2}$a2
∵正比例函数y=$\frac{1}{2}$x的图象与x轴交角的正切值为$\frac{1}{2}$,已知A的坐标为(27,9),
∴第4个正方形的边长是$\frac{27}{2}$=9×$\frac{3}{2}$,
同理可得第五个正方形的边长为$\frac{81}{4}$=9×($\frac{3}{2}$)2,
第六个正方形的边长$\frac{243}{8}$=9×($\frac{3}{2}$)3,
根据上面的规律,S3=$\frac{1}{2}$[9×($\frac{3}{2}$)2]2=$\frac{{3}^{8}}{{2}^{5}}$
故答案为:$\frac{27}{2}$,$\frac{{3}^{8}}{{2}^{5}}$.
点评 此题是一次函数图象上的点的坐标特征,主要考查了一次函数的性质,正方形的性质,三角形面积的计算,解本题的关键是确定阴影部分面积等于一个等腰直角三角形的面积加上梯形的面积再减去一个直角三角形的面积.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -1≤a<0 | B. | -1<a≤0 | C. | -1≤a≤0 | D. | -1<a<0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com