精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC在平面直角坐标系中,点AB分别在x轴和y轴上,且OAOB,边AC所在直线解析式为yx,若ABC的内心在y轴上,则tanACB的值为(  )

A.B.C.D.

【答案】B

【解析】

ABO是等腰直角三角形,然后根据△ABC的内心在y轴上,则BO是∠ABC的平分线,△ABC是直角三角形,求得BC的解析式,进而求得BC的长,然后根据三角函数的定义求解.

yx中,令y0,则x0,解得x1

OAOB

B的坐标是(01),AB,△OAB是等腰直角三角形.

∴∠ABO=45°

∵△ABC的内心在y轴上,

∴∠ABC2ABO90°,即△ABC是直角三角形,

BC的解析式是yx+c

则把B(01)代入得c1

BC的解析式是yx+1

根据题意得:

解得:

C的坐标是(﹣3,﹣2).

∵B(01

BC

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于点,与轴交于点,抛物线经过点.

(1)求点B的坐标和抛物线的解析式;

(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,

在线段上运动,若以为顶点的三角形与相似,求点的坐标;

轴上自由运动,若三个点中恰有一点是其它两点所连线段的中点(三点重合除外),则称三点为共谐点.请直接写出使得三点成为共谐点的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利( )元.

A508 B520 C528 D560

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】提出问题:(1)如图①,正方形ABCD中,点E,点F分别在边AD和边CD上,若正方形边长为4DE+DF4,则四边形BEDF的面积为 

探究问题:(2)如图②,四边形ABCDABBC4,∠ABC60°,∠ADC120°,点EF分别是边AD和边DC上的点,连接BEBF,若ED+DF3BD2,求四边形EBFD的面积;

解决问题:(3)某地质勘探队为了进行资源助测,建立了如图③所示的一个四边形野外勘查基地,基地相邻两侧边界DAAB长度均为4km,∠DAB90°,由于勘测需要及技术原因,主勘测仪C与基地边缘DB夹角为90°(∠DCB90°),在边界CD和边界BC上分别有两个辅助勘测仪EF,辅助勘测仪EF与主勘测仪C的距离之和始终等于4kmCE+CF4).为了达到更好监测效果,需保证勘测区域(四边形EAFC)面积尽可能大.请问勘测区域面积有没有最大值,如果有求出最大值,如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y|y1|+y21,其中y1x3y2x成反比例关系,且当x2时,y23

1)根据给定的条件写出yx的函数表达式及自变量x的取值范围:   

2)当x0时,根据yx的函数表达式,选取适当的自变量x的值,完成下表,并根据表中数据,在平面直角坐标系xOy中描点,画出该函数x0时的图象.

x

……

……

y

……

……

3)当x0时,结合函数图象,解决相关问题:估计y=﹣x+5时,x的值约为   .(保留一位小数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,∠B90°AB8tanCADCACDEF分别是ADAC上的动点(点EAD不重合),且∠FEC=∠ACB

1)求CD的长;

2)若AF2,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,弦的平分线交⊙O于点D,求:

1BCAD的长;

2)图中两阴影部分面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】盒中有若干枚黑棋和白棋,这些棋除颜色外无其他差别,现让学生进行摸棋试验:每次摸出一枚棋,记录颜色后放回摇匀.重复进行这样的试验得到以下数据:

摸棋的次数n

100

200

300

500

800

1000

摸到黑棋的次数m

24

51

76

124

201

250

摸到黑棋的频率(精确到0.001)

0.240

0.255

0.253

0.248

0.251

0.250

(1)根据表中数据估计从盒中摸出一枚棋是黑棋的概率是   ;(精确到0.01)

(2)若盒中黑棋与白棋共有4枚,某同学一次摸出两枚棋,请计算这两枚棋颜色不同的概率,并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为正方形ABCD的对角线,点EDC边上一点(不与CD重合),连接BE,以E为旋转中心,将线段EB逆时针旋转90°,得到线段EF,连接DF

1)请在图中补全图形.

2)求证:ACDF

3)探索线段EDDFAC的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案