精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC为等边三角形,AD为BC边上的高,且AB=2,则正方形ADEF的面积为
 
分析:要求正方形ADEF的面积,求边长AD长度即可,在直角△ABD中已知AB=2,BD=1,根据勾股定理求AD即可.
解答:解:在等边三角形AD为BC边上的高,则AD为BC边上的中线,
即D为BC的中点,BD=DC=1,
∵AD⊥BC,∴AD2+BD2=AB2
即AD=
AB2-BD2
=
3

∴正方形ADEF的面积为S=AD2=3,
故答案为 3.
点评:本题考查了直角三角形中勾股定理的运用,考查了等边三角形高线即中线的性质,考查了正方形面积的计算,本题中计算AD的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,△ABC为等边三角形,P为三角形内一点,将△ABP绕A点逆时针旋转60°后与△ACP′重合,若AP=3,则PP′=
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.
(1)求证:△ACD≌△CBF;
(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD与Q,PQ=4,PE=1
(1)求证∠BPQ=60°
(2)求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE.
①△ACD与△CBF是全等三角形吗?说说你的理由.
②ED=FC吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC为等边△,EC=ED,∠CED=120゜,P为BD的中点,求证:AE=2PE.

查看答案和解析>>

同步练习册答案