精英家教网 > 初中数学 > 题目详情
精英家教网已知如图,在△ABC中,点O为△ABC的内心,若∠A=54°,则∠BOC=
 
分析:根据内心的性质设∠ABO=∠CBO=x,∠ACO=∠BCO=y,由三角形内角和定理得2x+2y+∠A=180°,x+y+∠BOC=180°,两式消去x+y,得∠BOC=90°+
1
2
∠A,由此求解.
解答:解:∵点O为△ABC的内心,
∴BO平分∠ABC,CO平分∠ACB,
∴∠BOC=90°+
1
2
∠A=90°+
1
2
×54°=117°.
故答案为:117°.
点评:本题考查了三角形的内心的性质.根据是根据内心的性质,得出三角形两内角平分线的夹角与第三个角之间的等量关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、已知如图:在△ABC中,AB=AC,D在BC上,且DE∥AC交AB于E,点F在AC上,且DF=DC.求证:
(1)△DCF∽△ABC;
(2)BD•DC=BE•CF

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•通州区一模)已知如图,在△ABC中,AB=AC,∠ABC=α,将△ABC以点B为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE,点B、A、E恰好在同一条直线上,连接CE.
(1)则四边形DBCE是
形(填写:平行四边形、矩形、菱形、正方形、梯形)
(2)若AB=AC=1,BC=
3
,请你求出四边形DBCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,在△ABC中,∠B=30°,∠C=45°,AB-AC=2-
2
,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,在△ABC中,∠C=60°,AB=2
7
,AC=4,AD是边BC上的高,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,在△ABC中,AD平分∠BAC交BC于D,E为AD延长线上一点且∠ACE=∠B.求证:CD=CE.

查看答案和解析>>

同步练习册答案