精英家教网 > 初中数学 > 题目详情
已知一次函数y=kx+b,当x=-3时,y=-11;当x=4时,y=3.求一次函数的关系式.
∵当x=1时,y=-1;当x=-2时,y=5,
-3k+b=-11
4k+b=3
,解方程组得
k=2
b=-5

∴这个一次函数的关系式为y=2x-5.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过点(-2,1)和(4,4)
(1)求一次函数的解析式,并画出图象;
(2)P为该一次函数图象上一点,A为该函数图象与x轴的交点,若S△PAO=6,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一次函数y=(2a+1)x+a,y随x增大而增大,且它的图象不经过第四象限,则a的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

通过研究发现:学生的注意力随老师讲课时间变化而变化.讲课开始时,学生的兴趣激增,中间一段时间,学生注意力保持较理想状态,随后学生的注意力开始分散.学生的注意力y随时间x(分钟)变化的图象如图所示,当0≤x≤10时图象是抛物线的一部分,当10≤x≤20,20≤x≤40时,图象都是线段.
(1)开始多少分钟时,学生的注意力最强?能保持多少时间?
(2)x在什么范围内,学生的注意力随老师讲课时间增加而逐渐增强?x在什么范围内,学生的注意力随老师讲课时间增加而逐渐降低?
(3)当20≤x≤40时,求注意力y随与时间x(分钟)的函数关系式?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=kx+b(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别是方程x2-14x+48=0的两根(OA>OB),动点P从O点出发,沿路线O?B?A以每秒1个单位长度的速度运动,到达A点时运动停止.
(1)直接写出A、B两点的坐标;
(2)设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式(不必写出自变量的取值范围);
(3)当S=12时,直接写出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

拖拉机刚开始工作时,油箱中有40升油,且工作每小时耗油5升.
(1)请写出拖拉机邮箱中的余油量Q(升)与工作时间t(小时)的函数关系式;
(2)求出自变量t的取值范围;
(3)画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P,Q同时从点A出发,点P沿A?B?C方向以每秒2cm的速度运动,到点C停止,点Q沿A?D方向以每秒1cm的速度运动,到点D停止.P,Q两点用一条可伸缩的细橡皮筋连接,设x秒后橡皮筋扫过的面积为ycm2
(1)当0≤x≤1时,求y与x之间的函数关系式;
(2)当橡皮筋刚好触及钉子时,求x值;
(3)当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;
(4)当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸贷后,休息一段时间后返回.设汽车从甲地出发x小时,汽车距甲地的距离为y米,y与x的函数图象如图所示.根据图象信息,解答下列问题:
(1)若设汽车距乙地距离为y1,画出y1与x的图象.
(2)若设汽车的路程为y2,画出y2与x的图象.

查看答案和解析>>

同步练习册答案