精英家教网 > 初中数学 > 题目详情
17.若代数式$\frac{x+1}{x-2}$的值为零,则x=-1.

分析 分式的值为零时,分子x+1=0.

解答 解:依题意得:x+1=0,
解得x=-1.
当x=-1时,x-2=-3≠0,符合题意.
故答案是:-1.

点评 本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.已知分式$\frac{{m}^{2}-9}{m+3}$的值是0,则m的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.
(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线.
(2)如图2,已知△ABC是特异三角形,且∠A=30°,∠B为钝角,求出所有可能的∠B的度数.
(3)如图3,△ABC是一个腰长为2的等腰锐角三角形,且它是特异三角形,若它的顶角度数为整数,请求出其特异线的长度;若它的顶角度数不是整数,请直接写出顶角度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.有一个数值转换器,原理如图,当输入的x=64时,输出的y等于(  )
A.2B.8C.$\sqrt{8}$D.$\sqrt{18}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知:平行四边形的两条对角线长分别为10和14,则此平行四边形边长x的取值范围是2<x<12.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,⊙O是△ABC的外接圆,已知:AB≠AC,点M是$\widehat{AB}$的中点,点N是$\widehat{AC}$的中点,按要求解答下列问题:
(1)如图2,连接MN交AB于点E,交AC于点F.
①求证:AE=AF;②若2ME•NF=EF2,求∠A的度数;
(2)如图3,连接CM,BN,若CM=BN,求∠A的度数.
(3)在图1中,①仅用直尺找出点P,使点P为$\widehat{BC}$的中点;②连出六边形AMBPCN,已知⊙O的半径为1,△ABC的周长为4,求六边形AMBPCN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.定义:如图1,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=2,MN=4,BN=2$\sqrt{3}$,则点M、N是线段AB的勾股分割点;(填“是”或“不是”)
(2)已知点M、N是线段AB的勾股分割点,若AB=12,AM=5,求BN的长;
(3)如图2,P、Q是等腰Rt△ABC斜边AB的勾股分割点,PQ>AP,PQ>BQ,求∠PCQ的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在锐角△ABC中,AB=6,BC=11,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1
(1)如图1,当点C1在线段CA上时,∠CC1A1=60°;
(2)如图2,连接AA1,CC1.若△ABA1的面积为24,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是P1,求在旋转过程中,线段EP1长度的最大值与最小值的差.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③a+c>b;④抛物线与x轴的另一个交点为(3,0).其中正确的结论有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案