分析 首先根据题意可得GB=EF=CD=1.5米,DF=CE=8米,然后设AG=x米,GF=y米,则在Rt△AFG与Rt△ADG,利用正切函数,即可求得x与y的关系,解方程组即可求得答案
解答 解:根据题意得,四边形DCEF、DCBG是矩形,
∴GB=EF=CD=1.5米,DF=CE=8米,
设AG=x米,GF=y米,
在Rt△AFG中,tan∠AFG=tan60°=$\frac{AG}{FG}$=$\frac{x}{y}$=$\sqrt{3}$,
在Rt△ADG中,tan∠ADG=tan30°=$\frac{AG}{DG}$=$\frac{x}{y+8}$=$\frac{\sqrt{3}}{3}$,
∴x=4$\sqrt{3}$,y=4,即AG=4$\sqrt{3}$米,FG=4米.
(1)AF=$\sqrt{A{G}^{2}+F{G}^{2}}$=8(米);
(2)则AB=AG+GB=4$\sqrt{3}$+1.4≈8(米).
答:这棵树AB的高度约为8米.
点评 本题考查了解直角三角形的应用,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想与方程思想的应用.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com