精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中∠C=90°AC=BC=2OAB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为__

【答案】π﹣1

【解析】证明△AMO≌△CNO,将四边形CMON的面积转化为△ACO的面积,即可用割补法求出阴影部分的面积.

因为点OAB的中点,所以AO=BO=CO

由勾股定理得AB=.

因为ACB=90°,∠EOF=90°,所以CMO+CNO=180°,又∠AMO+∠CMO=180°,所以∠AMO=∠CNO

又因为∠A=∠BAO=CO

所以△AMO≌△CNO.

所以四边形CMON的面积=△CMO的面积+△CNO的面积

=△CMO的面积+△CNO的面积=△ACO的面积=△ABC面积的一半.

所以阴影部分的面积=扇形OEF的面积-四边形CMON的面积

=扇形OEF的面积-△ACO的面积

=.

故答案为: .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC.求证:∠BAC=∠BFC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上有三个点ABC(如图).请回答:

1写出数轴上与点B相距5个单位的点M所表示的数为

2在数轴上表示:将点C向左移动6个单位到达点D,点A的相反数为点E,并用号把BDE三点所表示的数连接起来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用网格画图:

1过点C画AB的平行线CD;

2过点C画AB的垂线,垂足为E;

3线段CE的长度是点C到直线_______的距离;

4连接CA、CB,在线段CA、CB、CE中,线段_______最短,理由:_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的顶点为D1,2,与x轴的一个交点A在点3,0

2,0之间,其部分图象如下图,则以下结论:b24ac<0;a+b+c<0;ca=2;方程ax2+bx+c2=0有两个相等的实数根其中正确结论的个数为( )

A1个 B2个 C3个 D4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知2x+y=1000,则代数式2016﹣4x﹣2y的值为(
A.16
B.50
C.100
D.1016

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(9)已知代数式(ax3)(2x4)x2b化简后,不含x2项和常数项.

(1)ab的值;

(2)(2ab)2(a2b)(a2b)3a(ab)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O上的直径,E的中点,OE交弦BC于点D,过点C作⊙O的切线交OE的延长线于点F,已知BC=8DE=2

1)求⊙O的半径;

2)求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠A=BCD=90°,BC=CD,CEAD,垂足为E,求证:AE=CE.

查看答案和解析>>

同步练习册答案