精英家教网 > 初中数学 > 题目详情
2.如图,AB为⊙O的直径,AB=4$\sqrt{3}$,点C为半圆AB上一动点,以BC为边向⊙O外作正△BCD(点D在直线AB的上方),连接OD,则线段OD的长(  )
A.随点C的运动而变化,最大值为4B.随点C的运动而变化,最大值为4$\sqrt{3}$
C.随点C的运动而变化,最小值为2D.随点C的运动而变化,但无最值

分析 方法一、先利用SSS判断出△OCD≌△OBD,进而得出点C在运动过程中,∠BDO始终是30°,再构造出直角三角形ODF,即可判断出点F和点B重合时,OF最大,即可得出OD的最大值.
方法二、先判断出△COH是等边三角形,得出HC=OC,∠OCH=60°,进而判断出△OCD≌△HCB,即可得出OD=BH,由圆中最大的弦是直径即可得出结论.

解答 解:如图,连接OC,
∵△BCD是等边三角形,
∴∠BDC=60°,CD=BD,
在△OCD和△OBD中,$\left\{\begin{array}{l}{CD=BD}\\{OC=OB}\\{OD=OD}\end{array}\right.$,
∴△OCD≌△OBD(SSS),
∴∠BDO=∠CDO=$\frac{1}{2}$∠BDC=30°,
过点O作OF⊥BD于F,
在Rt△ODF中,∠BDO=30°,
∴OD=2OF,
当点C在运动的过程中,OD要最大,即OF最大,而OF最大=OB,
∴OD最大=2OF最大=2OB=AB=4$\sqrt{3}$.
故选B.

方法二、如图2,连接OC,
将△OCD绕点C顺时针旋转60°,则点D落在点B处,OD和⊙O相交于H,
连接OH,CH,
同方法一,得出∠ODC=30°,
∴∠CBH=30°,
∴∠COH=60°,
∴△COH是等边三角形,
∴HC=OC,∠OCH=60°,
∵△BCD是等边三角形,
∴CD=BC,∠BCD=60°,
∴∠OCD=∠HCB,
在△OCD和△HCB中,$\left\{\begin{array}{l}{OC=HC}\\{∠OCD=∠HCB}\\{CD=BC}\end{array}\right.$,
∴△OCD≌△HCB(SAS),
∴OD=BH,
∵BH是⊙O的弦,
∴BH最大=AB=4$\sqrt{3}$,
即:OD最大=4$\sqrt{3}$,
故选B.

点评 此题是圆的综合题,主要考查了等边三角形的性质和判定,全等三角形的判断和性质,含30°的直角三角形的性质,解本题的关键是构造出直角三角形ODF,判断出OF最大等于OB.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

4.已知:2(x+5)2+3|y-2|=0,则xy=25.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B.C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①探究BD与CF之间的位置关系,并说明理由;
②当AB=$\sqrt{2}$,AD=$\sqrt{3}+1$时,求线段DH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,四边形ABCD中,AB=6,BC=4,AD=2,CD=6,且∠B=∠D=60°.则四边形ABCD的面积为9$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在△ABC中,AB=4,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则$\frac{{{S_{△DEC}}}}{{{S_{△ABC}}}}$的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,四边形ABCD中,∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在行驶完某段全程600千米的高速公路时,李师傅对张师傅说:“你的车速太快了,平均每小时比我多跑20千米,比我少用1.5小时就跑完了全程.”
(1)若这段高速公路全程限速110千米/时,如若两人全程均匀速行驶,那么张师傅超速了吗?请说明理由.
(2)张师傅所行使的车内邮箱余油量y(升)与行使时间t(时)的函数关系如图所示,则行驶完这段高速公路,他至少需要多少升油?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.设运动时间为t秒,当△PBQ为直角三角形时,t=$\frac{4}{3}$或$\frac{8}{3}$秒.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.一个圆锥的母线长为 4,侧面展开图是半圆,则圆锥的侧面积是(  )
A.B.C.D.16π

查看答案和解析>>

同步练习册答案