【题目】如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点
(1)求b,k的值;
(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围;
(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线没有交点时,求m的取值范围.
【答案】(1)b=5,k=4;(2);(3)1<m<9.
【解析】
(1)把B(4,1)分别代入y=﹣x+b和y=,即可得到b,k的值;
(2)根据反比例函数的性质,即可得到函数值y的取值范围;
(3)将直线y=﹣x+5向下平移m个单位后解析式为y=﹣x+5﹣m,依据﹣x+5﹣m=,可得△=(m﹣5)2﹣16,当直线与双曲线只有一个交点时,根据△=0,可得m的值.
解:(1)∵直线 y=﹣x+b 过点 B(4,1),
∴1=﹣4+b,
解得 b=5,
∵反比例函数y=的图象过点 B(4,1),
∴k=4;
(2)∵k=4>0,
∴当 x>0 时,y 随 x 值增大而减小,
∴当 2≤x≤6 时,
≤y≤2;
(3)将直线 y=﹣x+5 向下平移 m 个单位后解析式为 y=﹣x+5﹣m,
设直线 y=﹣x+5﹣m 与双曲线y= 只有一个交点,
令﹣x+5﹣m=,整理得 x2+(m﹣5)x+4=0,
∴△=(m﹣5)2﹣16=0,
解得 m=9 或 1.
∴直线与双曲线没有交点时,1<m<9.
科目:初中数学 来源: 题型:
【题目】如图,是⊙的弦,交于点,过点的直线交的延长线于点,且是⊙的切线.
(1)判断的形状,并说明理由;
(2)若,求的长;
(3)设的面积是的面积是,且.若⊙的半径为,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】富平因取“富庶太平”之意而得名,是华夏文明重要发祥地之一.某班举行关于“美丽的富平”的演讲活动.小明和小丽都想第一个演讲,于是他们通过做游戏来决定谁第一个来演.讲游戏规则是:在一个不透明的袋子中有一个黑球a和两个白球b、c,(除颜色外其它均相同),小丽从袋子中摸出一个球,放回后搅匀,小明再从袋子中摸出一个球,若两次摸到的球颜色相同,则小丽获胜,否则小明获胜,请你用树状图或列表的方法分别求出小丽与小明获胜的概率,并说明这个游戏规则对双方公平吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G.下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF.其中正确的是( )
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得点O在边AB上,且⊙O经过B、D两点;并证明AC与⊙O相切.(尺规作图,保留作图痕迹,不写作法)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A,点C在反比例函数y=(k>0,x>0)的图象上,AB⊥x轴于点B,OC交AB于点D,若CD=OD,则△AOD与△BCD的面积比为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,平行四边形ABCD中,AB⊥AC,AB=6,AD=10,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于A,E两点.
(1)线段AC的长度是 .
(2)如图2,当⊙P与边CD相切于点F时,求AP的长;
(3)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com