【题目】综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.
特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.
(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为 °.图3中∠MON的度数为 °.
发现感悟
解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:
小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.
小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.
(2)请你根据他们的谈话内容,求出图1中∠MON的度数.
类比拓展
受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.
(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.
【答案】(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣x°)+x°+(45°﹣
x°)=135°.
【解析】
(1)由题意可得,∠MON=×90°+90°,∠MON=
∠AOC+
∠BOD+∠COD,即可得出答案;
(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON=(∠MOC+∠NOD)+∠COD,即可得出答案;
(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.
解:(1)图2中∠MON=×90°+90°=135°;图3中∠MON=
∠AOC+
∠BOD+∠COD=
(∠AOC+∠BOD)+90°=
90°+90°=135°;
故答案为:135,135;
(2)∵∠COD=90°,
∴∠AOC+∠BOD=180°﹣∠COD=90°,
∵OM和ON是∠AOC和∠BOD的角平分线,
∴∠MOC+∠NOD=∠AOC+
∠BOD=
(∠AOC+∠BOD)=45°,
∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;
(3)同意,
设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,
∵OM和ON是∠AOC和∠BOD的角平分线,
∴∠MOC=∠AOC=
(180°﹣x°)=90°﹣
x°,
∠BON=∠BOD=
(90°﹣x°)=45°﹣
x°,
∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣x°)+x°+(45°﹣
x°)=135°.
科目:初中数学 来源: 题型:
【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A. 13=3+10 B. 25=9+16 C. 36=15+21 D. 49=18+31
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, DE是△ABC的中位线,DE∥BC,M是DE的中点,CM的延长线交AB于点N,则S△DMN∶S△CEM等于( )
A.1∶2B.1∶3C.1∶4D.1∶5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A.B两地之间有一条笔直的公路,甲车从A地出发匀速向B地行驶,中途因有事停留了1小时后按原速驶向B地;在甲车出发的同时乙车从B地出发匀速向A地行驶,到达A地后,立即按原路原速返回到B地。两车在行驶的过程中,甲乙两车距A地的路程y(千米)与行驶时间x(小时)之间的函数关系式如图所示,请结合图像回答下列问题:
(1)在图像的(_____)中填入正确的数值
(2)求甲车在中途因事停留后驶向B地过程中,y与x之间的函数关系式
(3)直接写出:乙车从A地出发多少小时后,甲.乙两车分别到甲车中途停留地的距离相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某蓝莓加工厂每天生产A,B两种品牌的蓝莓酒共600瓶,每天投入成本26400元,其中A,B两种品牌的蓝莓酒每瓶的成本和利润如下表:
(1)该厂每天生产A、B两种品牌的蓝莓酒各多少瓶?
(2)该厂每天获得利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l的解析式y=kx+3(k<0)与y轴交于A点,
与x轴交于点B.点C的坐标为(4,2).
(1)点A的坐标为 ;
(2)若将△AOB沿直线l折叠,能否使点O与点C重合,若能求此时直线l的解析式;若不能,请说明理由。
(3)若点C在直线l的下方,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和
,则A,B两点之间的距离
;坐标平面内两点
,
,它们之间的距离
.如点
,
,则
.
表示点
与点
之间的距离,
表示点
与点
和
的距离之和.
(1)已知点,
,
________;
(2)表示点
和点
之间的距离;
(3)请借助图形,求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com