精英家教网 > 初中数学 > 题目详情
5.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若$\frac{AE}{AB}$=$\frac{2}{3}$,则3S△EDH=13S△DHC,其中结论正确的有①②③④.

分析 ①根据题意可知∠ACD=45°,则GF=FC,则EG=EF-GF=CD-FC=DF;
②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;
③同②证明△EHF≌△DHC即可;
④若$\frac{AE}{AB}$=$\frac{2}{3}$,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=$\sqrt{26}$x,CD=6x,则S△DHC=$\frac{1}{2}$×HM×CD=3x2,S△EDH=$\frac{1}{2}$×DH2=13x2

解答 解:①∵四边形ABCD为正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF-GF,DF=CD-FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=$\frac{1}{2}$∠GFC=45°=∠HCD,
在△EHF和△DHC中,$\left\{\begin{array}{l}{EF=CD}\\{∠EFH=∠DCH}\\{FH=CH}\end{array}\right.$,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;
③∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=$\frac{1}{2}$∠GFC=45°=∠HCD,
在△EHF和△DHC中,$\left\{\begin{array}{l}{EF=CD}\\{∠EFH=∠DCH}\\{FH=CH}\end{array}\right.$,
∴△EHF≌△DHC(SAS),故③正确;
④∵$\frac{AE}{AB}$=$\frac{2}{3}$,
∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,$\left\{\begin{array}{l}{ED=DF}\\{∠EGH=∠HFD}\\{GH=FH}\end{array}\right.$,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
过H点作HM垂直于CD于M点,如图所示:
设HM=x,则DM=5x,DH=$\sqrt{26}$x,CD=6x,
则S△DHC=$\frac{1}{2}$×HM×CD=3x2,S△EDH=$\frac{1}{2}$×DH2=13x2
∴3S△EDH=13S△DHC,故④正确;
故答案为:①②③④.

点评 本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,如图为二人测试成绩折线统计图,下列说法合理的是(  )
①小亮测试成绩的平均数比小明的高
②小亮测试成绩比小明的稳定
③小亮测试成绩的中位数比小明的高
④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知?ABCD,BE⊥AC于点E,DF⊥AC于点F,连接DE、BF,求证:DE=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,半径为3的⊙A经过原点O和点C(0,2),B是⊙O上一点,则tan∠OBC为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:(x+1)2+x(2-x),其中x=$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列运算正确的是(  )
A.(a+2)2=a2+4B.x3+x2=x5C.$\frac{2}{2x+y}$=$\frac{1}{x+y}$D.(-3a32=9a6

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知一次函数y=(a+1)x+b的图象如图所示,那么a的取值范围是(  )
A.a<-1B.a>-1C.a≤-1D.a≥-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算
(1)|-1|+(-2)3+(7-π)0-($\frac{1}{3}$)-1
(2)(-a23+(-a32-a2•a3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,是利用平面直角坐标系画出的天安门广场的平面示意图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示国旗杆的点的坐标为(0,2.5),表示中国国家博物馆的点的坐标为(4,1),则表示下列建筑的点的坐标正确的是(  )
A.天安门(0,4)B.人民大会堂(-4,1)
C.毛主席纪念堂(-1,-3)D.正阳门(0,-5)

查看答案和解析>>

同步练习册答案