精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为( )

A.
B.
C.
D.
【答案】分析:设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r-m.利用相交弦定理,求出m与r的关系,即用r表示出m,即可表示出所求比值.
解答:解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,
QA=r-m.
在⊙O中,根据相交弦定理,得QA•QC=QP•QD.
即(r-m)(r+m)=m•QD,所以QD=
连接DO,由勾股定理,得QD2=DO2+QO2

解得
所以,
故选D.
点评:本题考查了相交弦定理,即“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.熟记并灵活应用定理是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案