分析 (1)根据顶点A(-1,4),可设二次函数关系式为y=a(x+1)2+4(a≠0),然后代入B的坐标求得a的值,从而求得函数的解析式;
(2)在二次函数的解析式中令x=0,即可求得与y轴的交点的纵坐标,从而求得与y轴的交点坐标.
解答 解:(1)由顶点A(-1,4),可设二次函数关系式为y=a(x+1)2+4(a≠0).
∵二次函数的图象过点B(2,-5),
∴点B(2,-5)满足二次函数关系式,
∴-5=a(2+1)2+4,
解得a=-1.
∴二次函数的关系式是y=-(x+1)2+4;
(2)令x=0,则y=-(0+1)2+4=3,
∴图象与y轴的交点坐标为(0,3).
点评 此题考查了待定系数法确定二次函数解析式,抛物线与y轴的交点,以及坐标与图形性质,灵活运用待定系数法是解本题的关键.
科目:初中数学 来源: 题型:选择题
A. | 9.2m | B. | 9.1m | C. | 9.0m | D. | 8.9m |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4x2-4x=-1 | B. | 7x2+2x+3=0 | C. | 2x2+x-1=0 | D. | ${x^2}+2\sqrt{5}x+5=0$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com