精英家教网 > 初中数学 > 题目详情
如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

【答案】分析:(1)根据三角形ABC是等边三角形,得到∠BCA=∠BAC=60°,再根据圆周角定理的推论得到∠BFE=∠BCA=60°.根据两条平行弦所夹的弧相等证明弧DE=弧CF,从而得到∠EBD=∠CBF,∠EBF=∠ABC=60°,从而证明结论;
(2)结合等边三角形的边相等,尽量能够把已知的线段和未知的线段放到两个相似三角形中,进行求解.
解答:(1)证明:∵△ABC是等边三角形,
∴∠BCA=∠BAC=60°,
∵DF∥AC,
∴∠D=∠BAC=60°,∠BEF=∠D=60°
又∵∠BFE=∠BCA=60°,
∴△BEF是等边三角形.

(2)解:∵∠ABC=∠EBF=60°,
∴∠FBG=∠ABE,
又∠BFG=∠BAE=120°,
∴△BFG∽△BAE,

又BG=BC+CG=AB+CG=6,BE=BF,
∴BF2=AB•BG=24,
可得BF=2(舍去负值).
点评:熟练运用圆周角定理、两条平行弦所夹的弧相等的性质以及等边三角形的性质和判定、相似三角形的性质和判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF精英家教网∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,将△ABD绕点A点逆时针方向旋转后到达△ACE的位置,那么旋转角的度数是
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

同步练习册答案