精英家教网 > 初中数学 > 题目详情
12.在一个不透明的袋子里,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,红球、白球、黑球至少各有一个.
(1)当n为何值时,这个事件必然发生?
(2)当n为何值时,这个事件不可能发生?
(3)当n为何值时,这个事件可能发生?

分析 根据事件发生的可能性大小判断相应事件的类型即可.

解答 解:(1)当n≥6时,这个事件必然发生;
(2)当n≤3,这个事件不可能发生;
(3)当4<n<6时,这个事件可能发生.

点评 本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.为培育和催生经济社会发展新动力,国务院提出了“大众创业,万众创新”的伟大号召,某市为了解一年来人们对这一号召的响应情况,对该市各区的专利发明数量进行了调查,统计和分析,并绘制成下表和如图1,2所示的统计图.

(1)2016年全市各区发明专利总数量是多少项?
(2)补全2016年各区专利数量条形图,并求2016年扇形图中B区所占的圆心角是多少度?
(3)要使E区2018年的发明专利达到2016年F区的水平,从2016年开始,平均每年的增长率至少达到多少?(百分号前保留整数,取$\sqrt{3}$≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园ABCD,墙长为18m.设AD的长为x m,菜园ABCD的面积为y m2.则函数y关于自变量x的函数关系式是y=(30-2x)x,x的取值范围是6≤x<15.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知,△ABC的三边为9,7,6,与△ABC相似的△DEF的最小边为18,则另两边为27,21.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:(-$\frac{1}{3}$)0+(-2)-2-($\frac{1}{2}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,若BC=a,CA=b,AB=c,CD=h,设△ACD、△BCD与△ABC的内切圆半径分别为r1,r2,h,则下列结论:①$\frac{1}{a}$+$\frac{1}{b}$=$\frac{1}{h}$;②$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{1}{{h}^{2}}$;③r12+r22=r2;④r1+r2+r=h中,正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,甲游客以一定的速度沿路线“A→B→C→D→A”步行游览,在每个景点他都逗留一段时间,当他回到A处时,共用去4.5h,甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.根据图回答下列问题:

(1)图2中自变量是t,因变量是s.
(2)改游客在景点B处逗留的时间是1.2小时,他从景点B到景点C时行走的平均速度是2千米/时.
(3)该游客沿路线“A→B→C→D→A”共步行的路程是3.5km.
(4)图2中点P表示该游客游览3.4小时后步行2.6km.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如果两个角的差的绝对值等于90°,就称这两个角互为垂角,例如:∠1=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角)
(1)如图,O为直线AB上一点,OC⊥AB于点O,OE⊥OD于点O,直接指出图中所有互为垂角的角;
(2)如果一个角的垂角等于这个角的补角的$\frac{2}{3}$,求这个角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知:如图,点P是正方形ABCD的对角线AC上一点,过点P作EF⊥DP,交AB于点E,交CD于点G,交BC的延长线于点F.
(1)求证:DP=PF;
(2)若正方形ABCD的边长为3,且CP=$\sqrt{2}$,求线段AE的长度.

查看答案和解析>>

同步练习册答案